Scientists Discover Switch to Boost Antiviral Response to Fight Infectious Diseases

Singapore scientists from Bioprocessing Technology Institute (BTI) under the Agency of Science, Technology and Research have, for the first time, identified the molecular switch that directly triggers the bodys first line of defense against pathogens, more accurately known as the bodys innate immunity. The scientists found that this switch called Brutons tyrosine kinase (BTK) when turned on, activates the production of interferons -- a potent class of virus killers that enables the body to fight harmful pathogens such as dengue and influenza viruses.

While there are antiviral drugs to treat influenza, the high rates of mutation that are characteristic of the influenza virus have made it difficult to treat with one universal drug or vaccine. As for dengue, there are currently no clinically approved vaccines or cures either. This discovery of BTKs role as a critical switch that boosts the bodys anti-viral response, paves the way for developing anti-viral drugs that target the BTK switch to fight infectious diseases.

To investigate the role of BTK in innate immunity, the research team from BTI extracted a class of innate immune cells known as macrophages from both normal mice and from mice deficient in BTK and challenged them with the dengue virus. They found that the BTK-deficient immune cells were unable to produce interferons, and hence had much higher viral counts compared to the healthy immune cells that had high-levels of interferons to fight the virus effectively.

To further demonstrate the critical role of BTK in anti-viral response, the team focussed on BTKs role in Toll-like Receptor 3 (TLR3) signaling. TLR3 is needed for cells to activate the interferon response when cells are infected by viruses. The team examined the effect of having a perpetually on or off BTK switch in TLR3 signaling. They uncovered that a constitutively active or on BTK switch enhanced the production of interferon, resulting in a stronger and more lasting anti-viral response with significant reduction in Dengue viral counts. In contrast, a perpetually off BTK switch led to a poor anti-viral response with very low levels of inteferons produced, and little protection against Dengue virus infection.

Previously, scientists have always thought that BTK is important primarily in antibody production due to observations made of an inherited genetic disorder in humans called X-linked Agammaglobulinemia (XLA).  These patients do not have a functional BTK switch, and are unable to produce antibodies because defects in BTK cripple maturation of B cells, a type of white blood cell that produces antibodies.

 We are very excited because this is the first time that the link between BTK and its critical role in the immediate anti-viral responses of the immune system, triggered in response to invading viruses like Dengue, is definitively demonstrated, says Dr. Koon-Guan Lee, the first author of this paper.

Professor Kong-Peng Lam, acting executive director of BTI and the head of the immunology group that conducted the research, says, This study adds new insights to the understanding of how the bodys innate immunity is triggered to create an effective immune response. It is a prime example of how better understanding in basic biological systems brings us a step closer to understanding the mechanism of human diseases, and enables us to find more effective treatment strategies to combat deadly viral diseases, which we have yet to find cures for.

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish