This site is part of the Global Exhibitions Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 3099067.

Informa

How to Select an Ideal Disinfectant

Article

This article appeared in the June 2009 issue of ICT in the How to Do Anything Better Guide.

With the emergence of antibiotic-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), etc. and more virulent strains of well-known pathogens such as Clostridium difficile, the utilization of appropriate disinfectant products has become exceedingly important. However, there is much more to consider than simply if the product carries effectiveness against a particular organism. The Centers for Disease Control and Prevention (CDC)’s “Guideline for Disinfection and Sterilization in Healthcare Facilities” (2008) has identified several of the key criteria that should be carefully measured when evaluating a disinfectant product or chemistry.

Speed of Disinfection

It may be surprising for some to hear, but disinfectants do not terminally disinfect on contact. Each product requires a specific length of time that it must remain wet on a surface to achieve complete disinfection. This is known as the “contact time” and it will be clearly listed on the label of registered disinfectant products. To ensure terminal disinfection, the contact time must be complied with. Products that dry before this contact time is achieved — whether because it is too long (10 minutes) or because the product itself contains solvents or alcohols causing it to evaporate rapidly despite having a short in-vitro contact time – will not achieve complete disinfection. Therefore, ideal disinfectant chemistries and products will offer rapid and realistic contact times. This ensures compliance and ultimately instills confidence that disinfection will be achieved.

Spectrum of Microbicidal Efficacy

The war we wage against microbes is one fought against an essentially invisible enemy. Unfortunately, it is nearly impossible for us to easily identify which microorganisms are present on a surface at any one time. This begs the question, how can we rightfully employ disinfectant products that only exhibit effectiveness against a narrow spectrum of bacteria and easy to kill viruses? How are we addressing more difficult to kill pathogens such as norovirus when we use these narrow spectrum products? Ideal disinfectants will demonstrate a broad antimicrobial effectiveness, ultimately preventing the environmental transmission of a wide variety of microorganisms including potentially resistant strains.

Cleaning Ability

The cleaning efficacy of a disinfectant is an often overlooked attribute. Perhaps not as glamorous as the spectrum or speed of kill, the cleaning efficacy – or lack thereof – of a disinfectant has the potential to affect the entire disinfection process. Environmental infection control best practices clearly recommend that cleaning should precede the disinfection of a surface or item. Dust, dirt and organic soil can create protective reservoirs for pathogens if not effectively removed. Using a disinfectant that is considered an effective cleaner not only removes the need for adding secondary cleaning products but also provides added confidence, that in situations when a formal cleaning step has been missed or inadequately performed, the disinfectant itself will remove soil allowing disinfection to occur. Often this is achieved with the inclusion of surfactants within the product’s makeup. Surfactants not only enhance the cleaning efficacy of a product but also assist in ensuring complete and even coverage on a surface, preventing beading that occurs with many liquids. Even coverage equals even disinfection.

« Previous12Next »
comments powered by Disqus