The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favoring a move toward reprocessing in central facilities. Gordon Smith, of the Institute of Infection, Immunity and Inflammation at the Veterinary and Life Sciences University of Glasgow, and colleagues, sought to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods.
The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate.
Residual protein was detected on 72 percent (n = 136) of instruments reprocessed centrally and 90 percent (n = 170) of instruments reprocessed locally. Significantly less protein (p < 0.001) was recovered from instruments reprocessed centrally (median 20.62 g, range 0 - 5705 g) than local reprocessing (median 111.9 g, range 0 - 6344 g).
The researchers concluded that overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency. Their work was published in theJournal of Foot and Ankle Research.
Reference: Smith G, Goldie F, Long S, Lappin DF, Ramage G and Smith AJ. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units. Journal of Foot and Ankle Research 2011, 4:2 doi:10.1186/1757-1146-4-2.
Tackling Health Care-Associated Infections: SHEA’s Bold 10-Year Research Plan to Save Lives
December 12th 2024Discover SHEA's visionary 10-year plan to reduce HAIs by advancing infection prevention strategies, understanding transmission, and improving diagnostic practices for better patient outcomes.
Environmental Hygiene: Air Pressure and Ventilation: Negative vs Positive Pressure
December 10th 2024Learn more about how effective air pressure regulation in health care facilities is crucial for controlling airborne pathogens like tuberculosis and COVID-19, ensuring a safer environment for all patients and staff.
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Infection Intel: Revolutionizing Ultrasound Probe Disinfection With Germitec's Chronos
November 19th 2024Learn how Germitec’s Chronos uses patented UV-C technology for high-level disinfection of ultrasound probes in 90 seconds, enhancing infection control, patient safety, and environmental sustainability.
Why Clinical Expertise Is the Cornerstone to Your Most Profitable Business Line
November 14th 2024Perioperative nurses bring vital skills in patient safety, infection control, and quality improvement. They enhance surgical outcomes and support health care systems during complex, high-risk procedures.