Over the past several decades, scientists have faced challenges in developing new antibiotics even as bacteria have become increasingly resistant to existing drugs. One strategy that might combat such resistance would be to overwhelm bacterial defenses by using highly targeted nanoparticles to deliver large doses of existing antibiotics.
In a step toward that goal, researchers at MIT and Brigham and Womens Hospital have developed a nanoparticle designed to evade the immune system and home in on infection sites, then unleash a focused antibiotic attack.
This approach would mitigate the side effects of some antibiotics and protect the beneficial bacteria that normally live inside our bodies, says Aleks Radovic-Moreno, an MIT graduate student and lead author of a paper describing the particles in the journal ACS Nano.
Institute professor Robert Langer of MIT and Omid Farokzhad, director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Womens Hospital, are senior authors of the paper. Timothy Lu, an assistant professor of electrical engineering and computer science, and MIT undergraduates Vlad Puscasu and Christopher Yoon also contributed to the research.
The team created the new nanoparticles from a polymer capped with polyethylene glycol (PEG), which is commonly used for drug delivery because it is nontoxic and can help nanoparticles travel through the bloodstream by evading detection by the immune system.
Their next step was to induce the particles to specifically target bacteria. Researchers have previously tried to target particles to bacteria by giving them a positive charge, which attracts them to bacterias negatively charged cell walls. However, the immune system tends to clear positively charged nanoparticles from the body before they can encounter bacteria.
To overcome this, the researchers designed antibiotic-carrying nanoparticles that can switch their charge depending on their environment. While they circulate in the bloodstream, the particles have a slight negative charge. However, when they encounter an infection site, the particles gain a positive charge, allowing them to tightly bind to bacteria and release their drug payload.
This switch is provoked by the slightly acidic environment surrounding bacteria. Infection sites can be slightly more acidic than normal body tissue if disease-causing bacteria are reproducing rapidly, depleting oxygen. Lack of oxygen triggers a change in bacterial metabolism, leading them to produce organic acids. The bodys immune cells also contribute: Cells called neutrophils produce acids as they try to consume the bacteria.
Just below the outer PEG layer, the nanoparticles contain a pH-sensitive layer made of long chains of the amino acid histidine. As pH drops from 7 to 6 representing an increase in acidity the polyhistidine molecule tends to gain protons, giving the molecule a positive charge.
Once the nanoparticles bind to bacteria, they begin releasing their drug payload, which is embedded in the core of the particle. In this study, the researchers designed the particles to deliver vancomycin, used to treat drug-resistant infections, but the particles could be modified to deliver other antibiotics or combinations of drugs.
Many antibiotics lose their effectiveness as acidity increases, but the researchers found that antibiotics carried by nanoparticles retained their potency better than traditional antibiotics in an acidic environment.
The current version of the nanoparticles releases its drug payload over one to two days. You dont want just a short burst of drug, because bacteria can recover once the drug is gone. You want an extended release of drug so that bacteria are constantly being hit with high quantities of drug until theyve been eradicated, Radovic-Moreno says.
Although further development is needed, the researchers hope the high doses delivered by their particles could eventually help overcome bacterial resistance. When bacteria are drug resistant, it doesnt mean they stop responding, it means they respond but only at higher concentrations. And the reason you cant achieve these clinically is because antibiotics are sometimes toxic, or they dont stay at that site of infection long enough, Radovic-Moreno says.
One possible challenge: There are also negatively charged tissue cells and proteins at infection sites that can compete with bacteria in binding to nanoparticles and potentially block them from binding to bacteria. The researchers are studying how much this might limit the effectiveness of their nanoparticle delivery. They are also conducting studies in animals to determine whether the particles will remain pH-sensitive in the body and circulate for long enough to reach their targets.
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.