Sweet news for those looking for new antibiotics: A new research published in the July 2010 print edition of the Federation of the American Societies for Experimental Biology (FASEB) Journal explains for the first time how honey kills bacteria. Specifically, the research shows that bees make a protein that they add to the honey, called defensin-1, which could one day be used to treat burns and skin infections and to develop new drugs that could combat antibiotic-resistant infections.
"We have completely elucidated the molecular basis of the antibacterial activity of a single medical-grade honey, which contributes to the applicability of honey in medicine," said Sebastian A.J. Zaat, PhD, a researcher involved in the work from the Department of Medical Microbiology at the Academic Medical Center in Amsterdam. "Honey or isolated honey-derived components might be of great value for prevention and treatment of infections caused by antibiotic-resistant bacteria."
To make the discovery, Zaat and colleagues investigated the antibacterial activity of medical-grade honey in test tubes against a panel of antibiotic-resistant, disease-causing bacteria. They developed a method to selectively neutralize the known antibacterial factors in honey and determine their individual antibacterial contributions. Ultimately, researchers isolated the defensin-1 protein, which is part of the honey bee immune system and is added by bees to honey. After analysis, the scientists concluded that the vast majority of honey's antibacterial properties come from that protein. This information also sheds light on the inner workings of honey bee immune systems, which may one day help breeders create healthier and heartier honey bees.
"We've known for millennia that honey can be good for what ails us, but we haven't known how it works," said Gerald Weissmann, MD, editor-in-chief of the FASEB Journal. "Now that we've extracted a potent antibacterial ingredient from honey, we can make it still more effective and take the sting out of bacterial infections."
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.