Patients in healthcare facilities can develop infections as a result of contamination of indwelling medical devices such as catheters with bacteria that are normal inhabitants of the skin of the patient or health care personnel. The bacterium Staphylococcus epidermidis is a major cause of such infections. This is in part because of its ability to form biofilms surface-attached agglomerations of microorganisms that are extremely difficult to eradicate on indwelling devices.
Michael Otto and colleagues, at the National Institutes of Health (NIH) in Bethesda, Md. have now identified the bacterial products that enable Staphylococcus epidermidis biofilms to detach from the surface to which they are adhered and cause infection in a mouse model of catheterization. Importantly, molecules known as antibodies that target these bacterial products inhibited bacterial spread in the mouse model, leading the authors to suggest that interfering with biofilm detachment mechanisms might provide a new approach to preventing biofilm-associated infections. The research was published in the Journal of Clinical Investigation.
Reference: Wang R, Khan BA, Cheung GYC, Bach THL, Jameson-Lee M, Kong KF, Queck SY and Otto M. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Investigation. Dec. 6, 2010.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.
Far UV-C Light Shows Promise for Decontaminating Medical Equipment in Clinical Settings
June 4th 2025Manual cleaning gaps on shared hospital equipment can undermine infection control efforts. New research shows far UV-C light can serve as a safe, automated backup to reduce contamination in real-world clinical settings.