The constant battle for dominance between disease-causing bacteria and our immune systems has led to the evolution of some crafty warfare tactics on both sides.
One particularly nasty bacteria: methicillin-resistant Staphylococcus aureus, or MRSA.
Common in schools and health-care settings, MRSA has been known to cause occasionally life-threatening infections. This has recently led Michigan Medicine researchers to investigate how immune system cells deliver their deadly payloads to destroy invading organisms such as MRSA.
Their work is published in the journal Cell Host & Microbe.
When alerted of an invasion, immune cells called macrophages surround and engulf bacteria, quarantining them inside a compartment called a phagosome. The cell then destroys them with weapons called reactive oxygen species (ROS).
"One example of a reactive oxygen species is bleach," says Mary O'Riordan, PhD, a professor of microbiology and immunology at the University of Michigan and the study's principal investigator. "Just like you don't want bleach on your skin, bacteria don't want reactive oxygen to damage their outside surface."
Immune cells usually deploy ROS inside their phagosomes using a well-known mechanism, which involves dumping oxidants into the compartment to kill the bacteria.
But many bacteria -- including salmonella and MRSA -- have found ways to avoid this form of attack.
O'Riordan and her colleagues, research investigator Basel Abuaita, PhD, and Tracey Schultz, sought to discover what backup system immune cells employed to fight these bacteria.
In doing so, they found an unexpected player: mitochondria.
"We discovered that macrophages sense invading MRSA and turn on the machinery to increase mitochondrial development of ROS," Abuaita says.
ROS is a natural byproduct of mitochondria's normal job in cells, the production of energy.
And the team found that when placed under stress, such as invasion by a foreign agent, chemical signals from the endoplasmic reticulum -- an organelle in the cell that acts as sort of a post office, packaging and sending substances around the cell -- notifies mitochondria to ramp up production of ROS.
Still, a question remained: how do mitochondria deliver their ROS to the phagosome?
"ROS are also damaging to our own cells, so we hypothesized that there must be some delivery mechanism," O'Riordan says. "Mitochondria have not traditionally been known to package and deliver substances to different parts of the cell."
Their studies revealed that the ROS were delivered in tiny mitochondrial vesicles, recently discovered as a way that mitochondria could talk to other parts of the cell.
To find these payloads, Abuaita used florescent tags and live high-resolution imaging techniques to watch the process unfold in real time.
He infected a cell with MRSA under a microscope and inserted a dye that would glow in the presence of ROS. Mitochondria in the infected cell began to glow, as did the macrophage when the bacteria touched its outside membrane.
Once the macrophage ate the MRSA, he witnessed a glowing hot spot as the ROS was delivered to the phagosome.
Why, though, would a cell have two different methods for deploying ROS?
"The immune system is full of redundancies," O'Riordan says. "It has to, by definition; every bacteria, virus, or parasite that we know is a pathogen is one because it has evolved ways to avoid the immune system.
"The immune system also has a real diversity of purpose and mechanism," she adds. "Being open to different ways of asking questions about the immune system and understanding the biology of these pathogens helped us to find the right experimental system to use."
Source: Michigan Medicine
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Breaking the Cycle of Silence: Why Sharps Injuries Go Unreported and What Can Be Done
Published: July 24th 2025 | Updated: July 23rd 2025Despite decades of progress in health care safety, a quiet but dangerous culture still lingers: many health care workers remain afraid to report sharps injuries, fearing blame more than the wound itself.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Pathogen Pulse: Facilities Need the SPD, Yersinia Enterocolitica Outbreak, and More
July 22nd 2025From unsterilized surgical tools in Colorado to a years-long methicillin-resistant Staphylococcus aureus (MRSA) outbreak in Virginia and a surging measles crisis in Canada, recent headlines reveal the fragile front lines of infection prevention and the high stakes when systems fail.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.