The immune system's B cells protect us from disease by producing antibodies, or "smart bullets," that specifically target invaders such as pathogens and viruses while leaving harmless molecules alone. But how do B cells determine whether a threat is real and whether to start producing these weapons?
An international team of life scientists shows in the May 16 issue of the journal Science how and why these cells respond only to true threats.
"It is critical for B cells to respond either fully or not at all. Anything in between causes disease," says the study's senior author, Alexander Hoffmann, a professor of microbiology, immunology and molecular genetics in the UCLA College of Letters and Science. "If B cells respond wimpily when there is a real pathogen, you have immune deficiency, and if they respond inappropriately to something that is not a true pathogen, then you have autoimmune disease."
The antibodies produced by B cells attack antigens - molecules associated with pathogens, microbes and viruses. A sensor on the cell's surface is meant to recognize a specific antigen, and when the sensor encounters that antigen, it sends a signal that enables the body's army of B cells to respond rapidly. However, there may be similar molecules nearby that are harmless. The B cells should ignore their signals - something they fail to do in autoimmune diseases.
So how do the B cells decide whether to start producing antibodies?
"These immune cells are somewhat hard of hearing, which is appropriate because the powerful and potentially destructive immune responses should jump into action only when danger calls, not when it whispers," says Hoffmann.
The B cells make their response only when a rather high threshold is reached, Hoffmann and his colleagues report. A small or moderate signal - from a harmless molecule, for instance - gets no response, which reduces the risk of false alarms.
"It's like your car's airbag, which won't be deployed unless you really need it," Hoffmann says. "You can imagine that if the airbag were poorly designed and if you brake very hard or have a slight accident, it could deploy slowly and be useless. You want it to deploy fully or not at all. That is what the B cell does when deciding whether it confronts something that is truly pathogenic or harmless. No B cell responds partially."
We have billions of B cells, and each one creates this threshold through a molecular circuit involving two molecules. One of these molecules, known as CARMA1, activates the other, IKKb, which further activates the first one.
"Positive feedback between the two causes infinite growth, and once you trigger it, there is no way to turn it off until the smart bullets are shot," says Hoffmann, whose research aims to understand and decode the language of cells. "But a second feature of positive feedback is that it can create a threshold only above which this runaway activation occurs."
He and his colleagues developed mathematical equations based on the molecular circuit and were then able to simulate, virtually, B cell responses. The team's resulting predictions were tested experimentally by their collaborators at the Laboratory for Integrated Cellular Systems at Japan's RIKEN Center for Integrative Medical Sciences. In one part of the study, the researchers made specific mutations in IKKb so that it could not signal back to CARMA1. They also made mutations in CARMA1 to prevent it from receiving the signal from IKKb. In both cases, the B cells responded partially, some of the time, like a weakly inflating airbag.
"It became a gray-zone response rather than a black-and-white response," says Hoffmann, who constructs mathematical models of biology.
The research could lead to better diagnosis of disease if patients with an autoimmune disorder, such as lupus, have a defect in this molecular circuit.
Co-authors of the study included Mariko Okada-Hatakeyama, a professor at Japan's RIKEN Center, and Marcelo Behar, a postdoctoral scholar in Hoffmann's laboratory who has now accepted a position as an assistant professor at the University of Texas, Austin.
Funding sources for the research included federal grants to Hoffmann by the National Cancer Institute and National Institute of Allergy and Infectious Diseases (grants R01CA141722, R01AI083453), both part of the National Institutes of Health, and funding to Okada-Hatakeyama from the Cell Innovation Program of Japan's Ministry of Education, Culture, Sports, Science and Technology, and the Japan Society for the Promotion of Science.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Pathogen Pulse: Facilities Need the SPD, Yersinia Enterocolitica Outbreak, and More
July 22nd 2025From unsterilized surgical tools in Colorado to a years-long methicillin-resistant Staphylococcus aureus (MRSA) outbreak in Virginia and a surging measles crisis in Canada, recent headlines reveal the fragile front lines of infection prevention and the high stakes when systems fail.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.