In a first on the quest to cure HIV, University of Pittsburgh Graduate School of Public Health scientists report today in EBioMedicine that they've developed an all-in-one immunotherapy approach that not only kicks HIV out of hiding in the immune system, but also kills it. The key lies in immune cells designed to recognize an entirely different virus.
The discovery, made in the laboratory using cells from people with HIV, is yet to be tested in clinical trials, but could lead to the development of a vaccine that would allow people positive for HIV to stop taking daily medications to keep the virus in check.
"A lot of scientists are trying to develop a cure for HIV, and it's usually built around the 'kick and kill' concept - kick the virus out of hiding and then kill it," said senior author Robbie Mailliard, PhD, assistant professor of infectious diseases and microbiology at Pitt Public Health. "There are some promising therapies being developed for the kill, but the Holy Grail is figuring out which cells are harboring HIV so we know what to kick."
Antiretroviral therapy (ART) typically controls HIV infections so well that the virus is virtually undetectable in the blood and cannot easily infect other people. But if a person with HIV stops taking the daily regimen of medications, which come with many side-effects, the virus can rage back and turn into full-blown AIDS. This is because the virus goes into a latent, inactive phase where it incorporates itself into the DNA of certain immune cells called "T helper cells," and lurks while a person is taking ART.
Mailliard and his team decided to look at a different virus that also goes latent and infects more than half of adults - and 95 percent of those with HIV: Cytomegalovirus (CMV), which can cause eye infections and other serious illnesses, but is usually controlled by a healthy immune system.
"The immune system spends a lot of time keeping CMV in check; in some people, 1 one out of every 5 T cells are specific to that one virus," said co-author Charles Rinaldo, PhD, professor and chair of Pitt Public Health's Department of Infectious Diseases and Microbiology. "That got us thinking - maybe those cells that are specific to fighting CMV also make up a large part of the latent HIV reservoir. So we engineered our immunotherapy to not only target HIV, but to also activate CMV-specific T helper cells."
To run the experiment, the team needed blood - and lots of it - from people with HIV controlled by ART. Nearly two dozen participants stepped up from the Pitt Men's Study, the Pittsburgh site of the Multicenter AIDS Cohort Study (MACS), a research study of the natural history of treated and untreated HIV/AIDS in men who have sex with men.
"The MACS participants were vital to the success of this study," said first author Jan Kristoff, MS, a doctoral candidate at Pitt Public Health. "You have to collect a lot of blood to find T cells latently infected with functional HIV in people on ART - it could be as few as 1 out of every 10 million cells. So the men would sit for as long as four hours hooked up to a machine that processed their blood and came back multiple times to give more samples."
In addition to the T helper cells, Kristoff also isolated immune cells called dendritic cells, which Mailliard describes as the quarterbacks of the immune system: "They hand off the ball and dictate the plays, telling other immune cells where to go and what to fight."
Dendritic cells are key to cancer immunotherapies, and Mailliard previously worked on a team developing such a therapy being used to treat melanoma. Conventional dendritic cells also have been used to induce the immune system to kill HIV. But they hadn't yet been exploited to "kick," or pull latent HIV out of hiding in the body. In this study, the team engineered "antigen-presenting type 1-polarized, monocyte-derived dendritic cells" (MDC1) that were primed in the lab to seek out and activate CMV-specific cells, with the thinking that they also may contain latent HIV.
When the MDC1 were added back to T helper cells containing latent HIV, they reversed that latency as expected, kicking the virus out of hiding. And then the big test came.
"Without adding any other drug or therapy, MDC1 were then able to recruit killer T cells to eliminate the virally infected cells," Mailliard said. "With just MDC1, we achieved both kick and kill - it's like the Swiss Army knife of immunotherapies. To our knowledge, this is the first study to program dendritic cells to incorporate CMV to get the kick, and also to get the kill."
The team is now pursuing funding to begin clinical trials to test this property of MDC1 in humans.
Additional authors on this research are Mariana L. Palma, PhD, Tatiana M. Garcia-Bates, PhD, Chengli Shen, MD, PhD, Nicolas Sluis-Cremer, PhD, and Phalguni Gupta, PhD, all of Pitt.
This research was supported by National Institute of Allergy and Infectious Diseases grants R21-AI131763, U01-AI35041, UM1-AI126603 and T32-AI065380.
Source: University of Pittsburgh Graduate School of Public Health
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Pathogen Pulse: Facilities Need the SPD, Yersinia Enterocolitica Outbreak, and More
July 22nd 2025From unsterilized surgical tools in Colorado to a years-long methicillin-resistant Staphylococcus aureus (MRSA) outbreak in Virginia and a surging measles crisis in Canada, recent headlines reveal the fragile front lines of infection prevention and the high stakes when systems fail.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.