Intranasal flu vaccines may be able to provide long-lasting protection against pandemic flu strains, according to a new study from immunologists at Columbia University Medical Center (CUMC). The researchers found that, in mice, the intranasal flu vaccine FluMistTM (Medimmune) led to the production of T cells in the lungs that provided long-term protection against multiple flu strains, including those that were not present in the vaccines. Mice given the traditional injectable vaccine, such as FluzoneTM (Sanofi Pasteur), did not produce these cells.
"Our results demonstrate that each type of flu vaccine offers a different kind of protection against influenza," says Donna Farber, PhD, professor of surgical sciences at CUMC and the study's principal investigator. "Vaccine developers may want to combine these attributes in a universal vaccine that is capable of offering protection against the familiar strains of influenza we expect to see during a typical yearly outbreak as well as novel strains that can cause a pandemic."
The study was recently published in the Journal of Clinical Investigation/Insight.
Currently, flu vaccines are designed to prompt the immune system to produce antibodies that circulate throughout the body. The antibodies recognize and neutralize the virus before it can cause illness.
However, antibodies recognize parts of the flu virus that mutate rapidly, so antibodies generated in response to a vaccine from one season are less effective in the following flu season. In some cases, the flu virus has mutated so much that very few people have had any exposure to it, either through past infections or vaccination. These strains can produce pandemics, with large numbers of people experiencing severe illness that can cause death.
Because of this, researchers are looking to develop a vaccine that would provide universal protection against a wide range of strains. Recent studies of flu infections have revealed that a special kind of T cell may be able to provide that protection. These cells reside within the lungs and can quickly eliminate virus-infected cells, thus preventing severe illness.
The current study shows that intranasal vaccines promote these "lung-resident" T cells, which prevented respiratory illness in mice exposed to different strains of flu virus. "These cells may not prevent you from getting sick, but they will help you clear virus more quickly and reduce the severity of the illness," Farber says.
Curiously, in the current study, the intranasal vaccines triggered limited production of antibodies specific to the vaccine strains. Recently, the CDC advisory panel on immunization practices recommended against the use of the intranasal flu vaccine for its lack of efficacy against seasonal influenza. This study by Farber's group indicates that these vaccines may still promote other types of protective immunity, which could be particularly effective against emerging viral strains.
The study is titled, "Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza protection." Additional authors included Kyra Zens and Jun Kui Chen.
Source: Columbia University Medical Center
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Breaking the Cycle of Silence: Why Sharps Injuries Go Unreported and What Can Be Done
Published: July 24th 2025 | Updated: July 23rd 2025Despite decades of progress in health care safety, a quiet but dangerous culture still lingers: many health care workers remain afraid to report sharps injuries, fearing blame more than the wound itself.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.