A team of researchers has discovered a new way for early detection of a potentially deadly fungal infection in patients with suppressed immune systems such as those being treated for leukemia or have had an organ transplant.
A multidisciplinary research group led by Allan Brasier of the University of Texas Medical Branch at Galveston, in tandem with several collaborating research institutions and the Aspergillosis Technology Consortium, published their findings in PLOS ONE.
Patients receiving leukemia chemotherapy treatments, bone marrow stem cell transplants or lung transplants are some of those at risk for serious infection by the disease-causing Aspergillus fungus, a common mold in the environment that easily becomes airborne. When inhaled, the mold colonizes the respiratory tract. In patients with immune suppression from their chemotherapy treatment, the mold invades into the bloodstream where it spreads and infects several organs including the liver, lungs and brain. People with normal immune systems are able to destroy the inhaled mold without becoming infected.
Despite close monitoring for infection and aggressive anti-fungal therapy in vulnerable people, the fatality rates are as high as 50 percent to 90 percent depending on a patient's underlying disease and site of infection. While early diagnosis can improve the patient's outcome, timely detection of the infection is difficult.
Currently, the infection is diagnosed with X-rays and tests that measure levels of fungal molecules that produce an immune reaction in a patient's blood. These tests are not very accurate and often can lead to a wrong diagnosis.
The study describes how the team studied patients undergoing chemotherapy for leukemia, bone marrow transplants and lung transplants from several of the collaborating institutions and identified, confirmed and evaluated a new method of detecting the infectious mold in patients with leukemia. Similar people with no health conditions participated in the study as a comparison group.
The test results for the mold were different for each group of patients, so future commercial diagnostic tests using this technology should be tailored for different medical conditions commonly linked with this infection.
Brasier, director of UTMB's Institute for Translational Sciences, says the breakthrough was "an example of successful collaboration that brought together experts in several different scientific fields to approach a difficult problem." The team's discovery could translate to refined diagnostics, earlier treatment and improved survival for patients affected by this infection. More studies will be needed to confirm and validate this panel as a diagnostic test in independent patients.
Other authors of this study include UTMB's Yingxin Zhao, Heidi Spratt, John Wiktorowicz, Hyunsu Ju, Susan Stafford, Zheng Wu and Kizhake Soman; L. Joseph Wheat from MiraVista Laboratories; Lindsey Baden and Nicolas Issa from Harvard University; Angela Caliendo from Alpert Medical School of Brown University; David Denning from the University of Manchester; Cornelius Clancy from the University of Pittsburgh; M. Hong Nguyen, Michele Sugrue and John Wingard from the University of Florida and Barbara Alexander form the Duke University Medical Center.
Source: University of Texas Medical Branch at Galveston
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Sharps Safety Starts with Us: Why Infection Preventionists Must Lead the Charge
July 28th 2025Sharps injuries remain a silent but serious threat in health care that infection preventionists are uniquely equipped to confront. With underreporting widespread and safety devices underused, it’s time for IPs to step into a leadership role, using their expertise in systems thinking, education, and policy to build a culture where staff protection is as prioritized as patient care.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.