A plastic covering that can be shrink-wrapped onto surfaces in hospitals, kitchens, and just about anywhere pathogens gather acts as a repellant and can go a long way in combatting superbugs, its inventors claim. Investigators with McMaster University created a flexible plastic wrap that’s textured with microscopic wrinkles to block external molecules, in a study published in ACS Nano.
The surface, working through a combination of nanoscale engineering and chemistry, takes its cue from the water-repellent lotus leaf. A drop of water or blood bounces off it, say the inventors, one of whom is engineering physicist Leyla Soleymani. “We’re structurally tuning that plastic,” she says in a press release. “This material gives us something that can be applied to all kinds of things.”
The McMaster team created 3 classes through this wrinkling process: micro-structured, nanostructured (self-assembly of nanoparticles), and their combination (hierarchically structured).
“We found that hierarchical structuring provides superior hydrophobicity and oleophobicity with water contact angle of above 150°, blood contact angle of above 140, hexadecane contact angle of above 110°, and sliding angles lower than 5°,” the study states.
Hydrophobicity is what makes some molecules repel water. Oleophobicity is the property in a molecule that makes it repel oils.
Investigators tested the material on methicillin-resistant Staphylococcus aureus (MRSA)
and Pseudomonas aeruginosa, noting that these hospital-acquired infections are often fatal, with a 90-day mortality rate of 21% for MRSA and 19% for P. aeruginosa in US hospitals.
“All of the surfaces included a fluorosilane treatment for enhancing their hydrophobicity and oleophobicity; however, omniphobic behavior was not observed with microstructured or nanostructured surfaces even with the fluorosilane treatment,” the study states. “The omniphobicity originates from the stable Cassie state and the increased air pockets trapped beneath the liquids contacting the hierarchical surfaces for both low and high surface tension liquids.” They describe the Cassie state as a robust omniphobicity without the use of lubricant due to the entrapment of air pockets within the structures.
To understand how well the surfaces repelled bacteria, the investigators created a touch-assay. “We showed that the application of this hierarchical omniphobic surface onto everyday items and medical devices reduced the transfer of Escherichia coli onto these objects from a contaminated agar plug,” the study states. LessE. coli was transferred to human skin that came into contact with the contaminated hierarchical surfaces compared to contaminated control surfaces.
“Our hierarchical wraps could easily be applied onto various surfaces in hospitals that are commonly contaminated with bacterial pathogens such as, doorknobs, bed tables, bed rails, and other high-risk surfaces,” the study states. “Additionally, since the hierarchical surfaces are fabricated through all- solution-processing, they would be amenable to large area applications and large volume manufacturing, being applicable to a wide range of surfaces that have a risk of being in contact with liquid-borne contaminants.”
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.