With one simple experiment, University of Illinois chemists have debunked a widely held misconception about an often-prescribed drug. Led by chemistry professor and Howard Hughes Medical Institute early career scientist Martin Burke, the researchers demonstrated that the top drug for treating systemic fungal infections works by simply binding to a lipid molecule essential to yeast's physiology, a finding that could change the direction of drug development endeavors and could lead to better treatment not only for microbial infections but also for diseases caused by ion channel deficiencies.
Illinois chemists discovered that a powerful treatment for fungal infections doesnt work the way doctors have assumed, setting a new course for drug development. Pictured from left to right are graduate students Matt Endo, Ian Dailey, Brice Uno, and Brandon Wilcock and professor Martin Burke. Not pictured: Kaitlyn Gray and Daniel Palacios. Photo by L. Brian Stauffer.
With one simple experiment, University of Illinois chemists have debunked a widely held misconception about an often-prescribed drug.
Led by chemistry professor and Howard Hughes Medical Institute early career scientist Martin Burke, the researchers demonstrated that the top drug for treating systemic fungal infections works by simply binding to a lipid molecule essential to yeast's physiology, a finding that could change the direction of drug development endeavors and could lead to better treatment not only for microbial infections but also for diseases caused by ion channel deficiencies.
"Dr. Burke's elegant approach to synthesizing amphotericin B, which has been used extensively as an antifungal for more than 50 years, has now allowed him to expose its elusive mode of action," says Miles Fabian, who oversees medicinal chemistry research grants at the National Institute of General Medical Sciences. The institute is part of the National Institutes of Health, which supported the work. "This work opens up avenues for improving upon current antifungals and developing novel approaches for the discovery of new agents."
Systemic fungal infections are a problem worldwide and affect patients whose immune systems have been compromised, such as the elderly, patients treated with chemotherapy or dialysis, and those with HIV or other immune disorders. A drug called amphotericin has been medicine's best defense against fungal infections since its discovery in the 1950s. It effectively kills a broad spectrum of pathogenic fungi and yeast, and has eluded the resistance that has dogged other antibiotics despite its long history of use.
The downside? Amphotericin is highly toxic.
"When I was in my medical rotations, we called it 'ampho-terrible,' because it's an awful medicine for patients," says Burke, who has an MD in addition to a PhD. "But its capacity to form ion channels is fascinating. So my group asked, could we make it a better drug by making a derivative that's less toxic but still powerful? And what could it teach us about avoiding resistance in clinical medicine and possibly even replacing missing ion channels with small molecules? All of this depends upon understanding how it works, but up until now, it's been very enigmatic."
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.