New research findings may help scientists design drugs to treat a viral infection that causes potentially fatal brain swelling and paralysis in children.
Â
The virus, called enterovirus 71, causes hand, foot and mouth disease and is common throughout the world. Although that disease usually is not fatal, the virus has been reported to cause fatal encephalitis in infants and young children, primarily in the Asia-Pacific region. Currently, no cure exists for the infection.
Â
New findings show the precise structure of the virus bound to a molecule that inhibits infection. The findings are detailed in a paper appearing this week in Proceedings of the National Academy of Sciences.
Â
"These results provide a structural basis for development of drugs to fight enterovirus 71 infection," says Michael G. Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.
Â
Rossmann is co-author of a paper with Purdue postdoctoral research associate Pavel Plevka; research scientist Rushika Perera; postdoctoral research associate Moh Lan Yap; Jane Cardosa, a researcher at Sentinext Therapeutics in Malaysia; and Richard J. Kuhn, a professor and head of Purdue's Department of Biological Sciences.
Â
The researchers had previously used a technique called X-ray crystallography to determine the virus's precise structure. A small molecule called a "pocket factor" is located within a pocket of the virus's protective shell, called the capsid. When the virus binds to a human cell, the pocket factor is squeezed out of its pocket resulting in the destabilization of the virus particle, which then disintegrates and releases its genetic material to infect the cell and replicate.
Â
Researchers led by Rossmann have developed antiviral drugs for other enteroviruses such as rhinoviruses that cause the common cold. The drugs work by replacing the pocket factor with a molecule that binds more tightly than the real pocket factor, inhibiting infection.
Â
In the new work, the researchers obtained a near-atomic-scale resolution three-dimensional structure of enterovirus 71 binding with an inhibitor called WIN 51711.
Â
"We show that the compound stabilizes the virus and limits its infectivity, probably through restricting dynamics of the capsid necessary for genome release," Rossmann says. "Our results provide a structural basis for development of antienterovirus 71 capsid-binding drugs."
Â
At a resolution of 3.2 angstrom, the images show nearly atomic-scale structural features.
Â
Hand, foot and mouth disease, an infection most common among young children, sometimes arises in a daycare setting. Of the 427,278 cases of the disease recorded in mainland China between January and May 2010, 5,454 cases were classified as severe, with 260 deaths, according to the World Health Organization.
Â
The research was supported by the National Institutes of Health and the U.S. Department of Energy.
Source: Purdue UniversityÂ
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.