Cryptococcus neoformans is a fungal pathogen that infects people with weakened immune systems, particularly those with advanced HIV/AIDS. New University of Minnesota Medical Research could mean a better understanding of this infection and potentially better treatments for patients.
Cryptococcus neoformans is a fungal pathogen that infects people with weakened immune systems, particularly those with advanced HIV/AIDS. New University of Minnesota Medical Research could mean a better understanding of this infection and potentially better treatments for patients.
In "Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease during Cryptococcus neoformans Infection" published in the journal MBio by American Society for Microbiology, Kirsten Nielsen, PhD, Professor, Department of Microbiology and Immunology, University of Minnesota, Medical School and colleagues were the first to examine how Cryptococcus genes impact the disease using human data.
After her last study, which found that the pathogen was driving the outcome of the Cryptococcus infection, Nielsen went on to examine the underlying genetic differences in her current study.
"We looked at differences in disease between patients - whether the patient lived or died, how the patient's immune system responded to the infection, and whether the antifungal drug treatment worked well - and we asked 'How do genetic differences in the Cryptococcus strains impact the disease variables?'" explained Nielsen.
The study found that there are 40 genes that are crucial to the ability of Cryptococcus to change the outcome of human disease, which have never before been identified as important. These genes give researchers a new set of information that they've never had before.
"We can take this new information generated using the human data and show how the genes work in other models," said Nielsen. "When we deleted the genes, it changed the ability of Cryptococcus to cause disease in a model system, so we know that they are important in disease."
Nielsen and her colleagues hope that identifying which versions of genes are important for patient survival will ultimately lead to better treatment of patients.
"We hope that this will have clinical benefits in the future. If we can figure out why certain strains are more deadly, and identify which patients have those strains, we can treat them differently. This will hopefully decrease reliance on toxic antifungals," said Katrina Jackson, a Graduate Student in the University of Minnesota Medical School, who was involved in the project.
Source: University of Minnesota Medical School
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Breaking the Cycle of Silence: Why Sharps Injuries Go Unreported and What Can Be Done
Published: July 24th 2025 | Updated: July 23rd 2025Despite decades of progress in health care safety, a quiet but dangerous culture still lingers: many health care workers remain afraid to report sharps injuries, fearing blame more than the wound itself.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Pathogen Pulse: Facilities Need the SPD, Yersinia Enterocolitica Outbreak, and More
July 22nd 2025From unsterilized surgical tools in Colorado to a years-long methicillin-resistant Staphylococcus aureus (MRSA) outbreak in Virginia and a surging measles crisis in Canada, recent headlines reveal the fragile front lines of infection prevention and the high stakes when systems fail.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.