An investigation by Southern Research biologists reveals for the first time that fatty acids known as oxylipins play a critical role in the formation of the biofilm shield that protects disease-causing bacteria from antibiotics.
A paper explaining this process, “Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence,” published Dec. 8 in Nature Communications, a peer-reviewed scientific journal. Authors are Javier Campos-Gomez, PhD, research biologist in Southern Research’s Drug Discovery Division, and Eriel Martinez, PhD, a researcher in the Campos-Gomez Laboratory.
The findings have significant implications for understanding the formation of biofilms of bacterial pathogens with multiple antibiotic resistance mechanisms that are responsible for opportunistic infections in immunocompromised individuals and others, Campos-Gomez said.
“When the bacterium produces the oxylipins, the biofilm is stronger,” he said. “When you remove the capacity of the bacteria to produce oxylipin, it’s unable to make the biofilm, and the host organism is able to better fight off the infection.”
Oxylipins are common in nature, and have been studied extensively in animals, plants, algae, and fungi, but the biological functions of these oxygenated fatty acids in bacteria have largely remained unexplained.
Campos-Gomez and Martinez studied P. aeruginosa – an antibiotic-resistant bacterium that causes disease in plants and animals – to better understand how oxylipins act to promote the organization of bacterial colonies into a more complex organization known as biofilm, where the bacteria are embedded inside a matrix that protect them from antibiotics.
Their findings show that oxylipin production essentially changes the bacteria from a free-swimming state to what amounts to a fixed state, allowing for the formation of a colony.
The researchers’ in vitro and in vivo (Drosophila flies) studies indicated that this step increased the ability of P. aeruginosa to form biofilms. They also demonstrated that the oxylipins produced by the bacterium promoted virulence in the flies and in lettuce leaves.
“We think oxylipins are signaling molecules that probably trigger other known or unknown pathways responsible for the biofilm production,” Campos-Gomez said.
Oxylipin’s central role in promoting bacterial organization and biofilm formation may offer a promising opportunity for new medicines or therapies. The development of an oxylipin blocker could make a formerly antibiotic-resistant bacterial infection once again treatable, Campos-Gomez said.
As a next phase in their research, Campos-Gomez and Martinez plan to use Southern Research’s state-of-the-art high throughput screening facilities and large compound collection to identify agents that could act to block the production of oxylipin in bacteria.
In essence, understanding how bacteria rely on oxylipin production to create biofilms creates a new pathway for treatments that could save lives.
“It’s very difficult to treat these infections because of the biofilm, which acts as a shield against antibiotics and the host defenses, making it impossible for the infected host’s immune system to clear the bacteria from the body,” Campos-Gomez said. “The host is unable to handle the infection, and it’s often fatal.”
Source: Southern Research
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.
Unmasking Vaccine Myths: Dr Marschall Runge on Measles, Misinformation, and Public Health Solutions
May 29th 2025As measles cases climb across the US, discredited myths continue to undercut public trust in vaccines. In an exclusive interview with Infection Control Today, Michigan Medicine’s Marschall Runge, PhD, confronts misinformation head-on and explores how clinicians can counter it with science, empathy, and community engagement.
Silent Saboteurs: Managing Endotoxins for Sepsis-Free Sterilization
Invisible yet deadly, endotoxins evade traditional sterilization methods, posing significant risks during routine surgeries. Understanding and addressing their threat is critical for patient safety.
Endoscopes and Lumened Instruments: New Studies Highlight Persistent Contamination Risks
May 7th 2025Two new studies reveal troubling contamination in both new endoscopes and cleaned lumened surgical instruments, challenging the reliability of current reprocessing practices and manufacturer guidelines.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.