Last year, South Africa became the first country to roll out a new anti-tuberculosis drug in its national program. This new drug, called bedaquiline, is the first new anti-tuberculosis drug to be developed in four decades. It improves the survival of patients with multidrug resistant TB, potentially offering a shorter treatment time with fewer side effects.
Scientists from Stellenbosch University (SU), in collaboration with a multidisciplinary team of researchers and clinicians, are now trying to conserve this life-saving treatment by studying how Mycobacterium tuberculosis, the bacterium that causes TB, can develop resistance to this drug. Their findings will be used to inform tuberculosis treatment guidelines to ensure that the right combination of anti-tuberculosis drugs are used along with bedaquiline in order to optimise patient treatment outcomes, while minimising the risk of developing resistance to the drug.
"We need to protect bedaquiline from the development of resistance and therefore it is crucial to understand how quickly and through which mechanisms bedaquiline resistance develops," says Dr. Margaretha de Vos, one of the lead authors of a scientific commentary article recently published in the New England Journal of Medicine. The article is based on research by De Vos and colleagues at the Division of Molecular Biology and Human Genetics at SU's Faculty of Medicine and Health Sciences (FMHS).
SU researchers studied the development of bedaquiline resistance in TB bacteria in a 65-year-old patient from Cape Town using a combination of novel techniques. These included (1) whole-genome sequencing of the bacteria in patient samples taken throughout various stages of the disease, (2) targeted deep sequencing of Rv0678, a gene of the bacteria that is associated with bedaquiline resistance, and (3) culture-based drug susceptibility testing.
The study showed that resistance to bedaquiline emerged despite the patient adhering to the standard treatment regimen, which requires bedaquiline to be taken along with at least five antibiotic drugs which the bacterium does not resist.
"These results show that it is crucial to increase our efforts to monitor patients receiving bedaquiline and to develop new diagnostic tools to rapidly identify bedaquiline resistance. By rapidly identifying bedaquiline resistance, we will be able change treatment and thereby prevent spread," says Rob Warren, distinguished professor in microbiology and co-author of the article.
Helen Cox, one of the senior co-authors of the study, suggests that "while it is important to monitor the emergence of resistance to new drugs such as bedaquiline, these data should not suggest that we restrict access to bedaquiline for the thousands of patients in South Africa who are in dire need of improved treatment for drug-resistant tuberculosis."
Source: Stellenbosch University
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Breaking the Cycle of Silence: Why Sharps Injuries Go Unreported and What Can Be Done
Published: July 24th 2025 | Updated: July 23rd 2025Despite decades of progress in health care safety, a quiet but dangerous culture still lingers: many health care workers remain afraid to report sharps injuries, fearing blame more than the wound itself.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.