Selfish bacterial cells that act in their own interests and do not cooperate with their infection-causing colleagues can actually reduce the severity of infection.
The selfish behavior of these uncooperative bacteria could be exploited to treat antibiotic-resistant infections, according to research being presented at the Society for General Microbiology's autumn meeting today.
Bacteria work together by using a well-studied communication system called Quorum Sensing (QS). During infection, bacteria talk to each other using QS to coordinate the release of toxins.
Researchers at the University of Nottingham have discovered that in Staphylococcus aureus infections, bacteria defective in QS can benefit from 'opting out' of toxin production. By doing so, they can invest more energy in reproducing while taking advantage of the nutrient-rich infection that is maintained by their neighbors.
By looking after themselves in this way, QS-deficient bacteria are quickly able to outnumber other bacteria that are busy producing toxins. As a result the overall severity of infection is reduced as fewer toxins are produced. "This opens up the interesting possibility of using these uncooperative bacteria to treat infection," said Eric Pollitt who is presenting the study.
The group tested the theory by introducing S. aureus into waxworms that subsequently developed infections. "We found that the QS-deficient bacteria could not only outgrow normal bacteria in the same population, but that they could also invade other cooperating populations to reduce the severity of infection," explained Pollitt. "This means that we could potentially isolate QS-deficient bacteria and use them to treat clinical S. aureus infections."
New approaches for the treatment of S. aureus infections are desperately needed as many strains of the bacterium, such as methicillin-resistant Staphylococcus aureus (MRSA), are resistant to antibiotics. "Importantly, as any treatment involving QS-deficient bacteria would not be based on antibiotics, it could complement current treatments for S. aureus infections," said Pollitt.
Using bacteria to treat bacterial infections is a potentially useful yet paradoxical approach. "It's an interesting concept of 'fighting like with like'," suggested Pollitt. "This work also highlights that the interactions between bacteria during an infection can be just as important as the interactions between the bacteria and the host."
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.