Transmission of healthcare-associated infections caused by antibiotic- and multi-drug resistant (MDR) pathogens (e.g. Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa) are a major concern in patient care facilities. Disinfectant usage is critical to control and prevent pathogen transmission, yet the relationships among strain, disinfectant type, contact time, and concentration are not well-characterized. West, et al. (2018) hypothesized that there would be significant differences in disinfectant efficacy among clinically relevant strains under off-label disinfectant conditions, but there would be less no differences among at registered label use concentrations and contact times. The purpose of this study was to quantify the effect of disinfectant concentration and contact time on the bactericidal efficacy of clinically relevant strains of S. aureus and P. aeruginosa.
Accelerated hydrogen peroxide (AHP), quaternary ammonium compounds (Quat), and sodium hypochlorite were tested at label and reduced contact times and concentrations against four MDR P. aeruginosa strains and four MRSA strains. Quantitative EPA method MB-25-02 was used to measure disinfectant efficacy reported as log10 reduction.
Both off-label disinfectant concentrations and contact times significantly affected efficacy of all disinfectants tested. Bactericidal efficacy varied among MRSA and P. aeruginosa strains.
The researchers conclude that the quantitative disinfectant efficacy method used highlights the inter-strain variability that exists within a bacterial species. It also underscores the need for a disinfectant validation method that takes these variances into account.
Reference: West AM, Teska PJ, Lineback CB and Oliver HF. Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy. Antimicrobial Resistance & Infection Control. 2018;7:49
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Spring Into Safety: How Seasonal Deep Cleaning Strengthens Hospital Infection Control
June 13th 2025Rooted in ancient rituals of renewal, spring-cleaning has evolved from cultural tradition to a vital infection prevention strategy in modern hospitals—one that blends seasonal deep cleaning with advanced disinfection to reduce pathogens, improve air quality, and protect patients.
AHE Exchange Summit 2025 Brings EVS and Infection Prevention Experts Together in Columbus, Ohio
June 9th 2025The Association for the Health Care Environment (AHE) is set to host its largest event of the year—Exchange Summit 2025—from June 8 to 11 in Columbus, Ohio. With over 600 environmental services (EVS) professionals expected to attend, this year’s conference focuses heavily on infection prevention, interdepartmental collaboration, and education that empowers frontline health care support leaders to improve patient safety and operational efficiency.
Far UV-C Light Shows Promise for Decontaminating Medical Equipment in Clinical Settings
June 4th 2025Manual cleaning gaps on shared hospital equipment can undermine infection control efforts. New research shows far UV-C light can serve as a safe, automated backup to reduce contamination in real-world clinical settings.