A new study describes how bacteria use a previously unknown means to defeat an antibiotic. The researchers found that the bacteria have modified a common housekeeping enzyme in a way that enables the enzyme to recognize and disarm the antibiotic. The study appears in the Proceedings of the National Academy of Sciences.
Bacteria often engage in chemical warfare with one another, and many antibiotics used in medicine are modeled on the weapons they produce. But microbes also must protect themselves from their own toxins. The defenses they employ for protection can be acquired by other species, leading to antibiotic resistance.
The researchers focused on an enzyme, known as MccF, that they knew could disable a potent Trojan horse antibiotic that sneaks into cells disguised as a tasty protein meal. The bacterial antibiotic, called microcin C7 (McC7) is similar to a class of drugs used to treat bacterial infections of the skin.
How Trojan horse antibiotics work is that the antibiotic portion is coupled to something thats fairly innocuous in this case its a peptide, says University of Illinois biochemistry professor Satish Nair, who led the study. So susceptible bacteria see this peptide, think of it as food and internalize it.
The meal comes at a price, however: Once the bacterial enzymes chew up the amino acid disguise, the liberated antibiotic is free to attack a key component of protein synthesis in the bacterium, Nair said.
That is why the organisms that make this thing have to protect themselves, he said.
In previous studies, researchers had found the genes that protect some bacteria from this class of antibiotic toxins, but they didnt know how they worked. These genes code for peptidases, which normally chew up proteins (polypeptides) and lack the ability to recognize anything else.
Before the new study, it wasnt clear how a peptidase could destroy an antibiotic, Nair says.
To get a fuller picture of the structure of the peptidase, Illinois graduate student Vinayak Agarwal crystallized MccF while it was bound to other molecules, including the antibiotic. An analysis of the structure and its interaction with the antibiotic revealed that MccF looked a lot like other enzymes in its family, but with a twist or, rather, a loop. Somehow MccF has picked up an additional loop of amino acids that it uses to recognize the antibiotic, rendering it ineffective.
Now we know that specific amino acid residues in this loop are responsible for making this from a normal housekeeping gene into something thats capable of degrading this class of antibiotics, Nair says.
With this information, researchers and eventually, doctors and other clinicians will be able to scan the genomes of disease-causing bacteria to find out which ones have genes with the antibiotic-resistance loop in them, Nair said. If we know what type of bacteria are causing an infection we know what kind of antibiotic to give and what kind not to give, he said.
Nair also is an affiliate of the Center for Biophysics and Computational Biology, the department of chemistry and of the Institute for Genomic Biology at Illinois. The research team included scientists from the Russian Academy of Sciences and Rutgers University.
Â
Understanding NHSN's 2022 Rebaseline Data: Key Updates and Implications for HAI Reporting
December 13th 2024Discover how the NHSN 2022 Rebaseline initiative updates health care-associated infection metrics to align with modern health care trends, enabling improved infection prevention strategies and patient safety outcomes.
Tackling Health Care-Associated Infections: SHEA’s Bold 10-Year Research Plan to Save Lives
December 12th 2024Discover SHEA's visionary 10-year plan to reduce HAIs by advancing infection prevention strategies, understanding transmission, and improving diagnostic practices for better patient outcomes.
Environmental Hygiene: Air Pressure and Ventilation: Negative vs Positive Pressure
December 10th 2024Learn more about how effective air pressure regulation in health care facilities is crucial for controlling airborne pathogens like tuberculosis and COVID-19, ensuring a safer environment for all patients and staff.
Revolutionizing Hospital Cleanliness: How Color Additives Transform Infection Prevention
December 9th 2024Discover how a groundbreaking color additive for disinfectant wipes improved hospital cleanliness by 69.2%, reduced microbial presence by nearly half, and enhanced cleaning efficiency—all without disrupting workflows.