Research by UC Irvine immunologists reveals new information about how our immune system functions, shedding light on a vital process that determines how the body’s ability to fight infection develops.
In the online version of Nature Immunology, neurology professor Dr. Michael Demetriou, postdoctoral scholar Raymond Zhou and other Institute for Immunology colleagues describe a critical mechanism underlying how T cells are created, selected and released into the bloodstream.
A T cell is a type of blood cell called a lymphocyte that protects the body from infection. T cell precursors called thymocytes are created in the bone marrow and migrate to the thymus – a walnut-sized organ at the base of the neck – where they turn into T cells.
However, very few thymocytes become fully functional T cells, and in the current study, the Demetriou team gained important new insights into why.
As they transform into T cells, thymocytes grow receptors that react to an antigen (any substance provoking an immune response) that’s bound to a small molecule called MHC. If this reaction is too strong or too weak, the thymocyte does not mature into a T cell.
Demetriou and the others found that the delicate balance determining the proper reactive ability is controlled by glycosylation, a process in which a sugar attaches to a target protein to give the protein stability and form. They saw that changes in the addition of sugars to receptors – including the blocking of glycosylation – during T cell development profoundly influenced how thymocytes reacted to the MHC-bound antigens and whether they became mature T cells.
Glycosylation also may help explain the creation of self-reactive T cells that escape from the thymus and can go on to attack the body’s own antigens, a process called autoimmunity that’s the basis of immune system disorders such as multiple sclerosis.
“Understanding how T cells are selected for antigen reactivity has been an enigma, and here we have made a major advance in understanding how this selection works,” Demetriou says.
The work, he added, represents a breakthrough in basic research and facilitates further discoveries about T cell processes that could someday yield new therapeutic approaches to infection and autoimmune diseases.
Haik Mkhikian, Ani Grigorian, Amanda Hong, David Chen and Araz Arakelyan of UCI contributed to the study, which received support from the National Institute of Allergy & Infectious Diseases (grant R01 AI053331) and the National Heart, Lung & Blood Institute (grant F30HL108451).
University of California, Irvine:
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
US Withdrawal From UNESCO Signals a Dangerous Step Back for Global Science
July 22nd 2025In a decision heavy with consequence and light on foresight, the US has once again chosen to walk away from UNESCO, leaving behind not just a seat at the table, but a legacy of global scientific leadership that now lies in question.
Breaking the Cycle of Silence: Why Sharps Injuries Go Unreported and What Can Be Done
Published: July 24th 2025 | Updated: July 23rd 2025Despite decades of progress in health care safety, a quiet but dangerous culture still lingers: many health care workers remain afraid to report sharps injuries, fearing blame more than the wound itself.
Telemedicine's Transformative Role in PPE Distribution and Sterile Equipment Management
July 22nd 2025In an era defined by digital transformation and post-pandemic urgency, telemedicine has evolved beyond virtual visits to become a vital infrastructure for delivering personal protective equipment (PPE) and managing sterile supplies. By enabling real-time forecasting, remote quality control, and equitable distribution, telemedicine is revolutionizing how health care systems protect both patients and providers.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.