Whole genome sequencing can quickly isolate the specific strain of bacteria causing an outbreak, identify the source of contamination, and enable rapid infection prevention to stop the spread of infection, according to a study published today. The findings, based on the examination of an outbreak of Pseudomonas aeruginosa in an Australian neonatal unit, appear in Infection Control & Hospital Epidemiology.
“Bacteria, such as P. aeruginosa, have evolved into many strains and frequently contaminate the healthcare environment, which makes it difficult to determine the source of an outbreak and control it using traditional methods,” says Rebecca Davis, MD, the study’s lead researcher. “Whole genome sequencing, determining the organism’s entire DNA sequence in real time, changes that. Our study found this technology allows us to implement rapid-response infection control protocols and stem the outbreak, which is critical for vulnerable patients, such as those in a neonatal intensive care unit.”
Researchers at Royal Prince Alfred Hospital in Sydney investigated an outbreak of P. aeruginosa colonization in babies, as an increase was seen in the numbers of babies carrying this bacteria on their skin. Only one baby, however, had become ill with infection from the bacteria.
During the outbreak, researchers conducted enhanced screening practices for all babies by collecting nasal swabs. They also swabbed common areas that were possible sources of transmission, such as areas in and around sinks, including splash-backs and soap dispensers. They found 18 infants were colonized with the bacteria, which in extreme cases can be fatal.
The investigators performed real-time DNA sequencing on specimens collected from 12 babies and seven environmental locations. They found that all babies except one were colonized by a specific strain of P. aeruginosa, ST253, and that two environmental samples obtained from different sinks also tested positive for the same strain. Upon this discovery, infection control personnel took active measures including isolating the babies infected with P. aeruginosa and cleaning and/or replacing equipment associated with the sink areas that tested positive. No further babies became ill with the bacteria.
“Whole genome sequencing gave us the ability to see that all but one of the babies were infected by the same strain of P. aeruginosa, something that would not have been recognized otherwise,” says Davis. “When trying to stem infection, the ability to exclude a patient from the outbreak is just as important as the recognition of the outbreak itself. Additionally, the thorough information provided about factors of each strain, like antibiotic resistance mutations if present, and the quick processing time make it a superior tool in infection control.”
Reference: Davis R, et al. Whole genome sequencing in real-time investigation and management of a Pseudomonas aeruginosa outbreak on a Neonatal Intensive Care Unit. Infection Control & Hospital Epidemiology. Web (June 8, 2015)
Source: Society for Healthcare Epidemiology of America (SHEA)
Pseudomonas aeruginosa: Infection Risks, Challenges, and Breakthroughs for Health Care Professionals
September 19th 2024Pseudomonas aeruginosa, a highly virulent pathogen, poses significant risks to immunocompromised patients, presenting challenges in treatment due to its antibiotic resistance and environmental persistence.
Advancing Infection Prevention With Diagnostic Innovation: Insights From Alesia McKeown, PhD
September 17th 2024Alesia McKeown, PhD, discusses the pivotal role of cutting-edge diagnostic technologies in enhancing infection prevention, especially in high-risk health care environments, during an interview with Infection Control Today.
The Role of Accurate Testing in Preventing Respiratory Illnesses: Insights from Dr. Aparna Ahuja
September 17th 2024On Get Ready for Flu Day, Dr. Aparna Ahuja discusses the importance of accurate respiratory illness testing, the risks of self-diagnosis, and the role of infection prevention personnel in public health education.
How Cleaning Medical Equipment Directly Affects Patient Safety and Equipment Longevity
September 16th 2024Hospital-associated infections affect over 1 million US patients annually. Proper medical equipment cleaning and sterilization significantly reduce infection risks, improving patient outcomes and safety.
Top 3 Secrets to Effective Infection Prevention and Control Through Strategic MDRO Surveillance
September 13th 2024Sean Brown’s 2024 Disease Prevention Summit presentation emphasized leveraging technology, prioritizing high-risk patients, and environmental surveillance to enhance infection prevention and control strategies.