Humans carry several pounds of microbes in our gastro-intestinal tracts. Recent research suggests that this microbial ecosystem plays a variety of critical roles in our health. Now, working in a mouse model, researchers from Canada describe many of the interactions between the intestinal microbiota and host, and show that antibiotics profoundly disrupt intestinal homeostasis. The research is published in the April 2011 issue of the journal Antimicrobial Agents and Chemotherapy.
"Intestinal microbes help us digest our food, provide us with vitamins that we cannot make on our own, and protect us from microbes that make us sick, amongst other things," says L Caetano M. Antunes of the University of British Columbia, a researcher on the study. In this study, the investigators used powerful mass spectrometry techniques to detect, identify, and quantify more than two thousand molecules which they extracted from mouse feces. They then administered antibiotics to the mice, to kill off most of their gut microbiota, and analyzed the feces anew.
The second round of mass spectroscopy revealed a very different metabolic landscape. The levels of 87 percent of the molecules detected had been shifted up or down by factors ranging from two-fold to 10,000-fold.
The most profoundly altered pathways involved steroid hormones, eicosanoid hormones, sugar, fatty acid, and bile acid. "These hormones have very important functions in our health," says Antunes. "They control our immune system, reproductive functions, mineral balance, sugar metabolism, and many other important aspects of human metabolism."
The findings have two important implications, says Antunes. "First, our work shows that the unnecessary use of antibiotics has deleterious effects on human health that were previously unappreciated. Also, the fact that our gut microbes control these important molecules raises the possibility that manipulating these microbes could be used to modulate diseases that have hormonal or metabolic origins (such as inmmunodeficiency, depression, diabetes and others). However, further studies will be required to understand exactly how our microbial partners function to modulate human physiology, and to devise ways of using this information to improve human health."
Reference: L.C.M. Antunes, J. Han, R.B.R. Ferreira, P. Lolic, C.H. Borchers, and B.B. Finlay, 2011. Effect of antibiotic treatment on the intestinal metabolome. Antim. Agents Chemother. 55:1494-1503.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.