Antibodies derived from a type of immune cell found in unusually high numbers in HIV-infected individuals with chronically uncontrolled virus levels are less effective at neutralizing HIV than antibodies derived from a different type of immune cell more common in people without HIV, scientists report. The findings help explain why people infected with HIV cannot sufficiently clear the virus with effective antibodies. The study was supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
NIAID scientists and researchers at Yale University and University of Maryland drew these conclusions by studying blood samples from 25 donors with chronic HIV infection. The donors were not taking antiretroviral drugs to suppress the level of HIV in their blood, or viral load, at the time of the study. Like many individuals with persistent levels of HIV, the donors' blood samples had abnormally high numbers of immune cells called tissue-like memory (TLM) B cells, compared with resting memory (RM) B cells, which account for the majority of memory B cells in people without HIV.
To better understand how this abnormal distribution of B cell types in people with uncontrolled HIV affected their immune response to the virus, researchers compared HIV-specific antibodies derived from both TLM and RM B cells. Generally, as B cells divide in response to a pathogen like HIV, genes that produce infection-fighting antibodies mutate, and descendant cells producing the most effective antibodies predominate. Despite the fact that TLM B cells generally divided more frequently than their RM counterparts, researchers found that the antibodies derived from TLM B cells showed genetic evidence of fewer adaptive mutations than those derived from RM B cells. In turn, these antibodies were less likely to effectively neutralize HIV than those derived from RM B cells. The RM B cells, in contrast, showed evidence of generating antibodies with more helpful mutations.
The researchers believe this difference in B cell distribution among those with uncontrolled HIV adds to a list of reasons most people do not make effective antibodies against the virus.
Reference: Meffre E, et al. Maturational characteristics of HIV-specific antibodies in viremic individuals. JCI Insight DOI: 10.1172/jci.insight.84610 (2016).
Source: NIH/National Institute of Allergy and Infectious Diseases
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.