Bacterially speaking, it gets very crowded in the human gut, with trillions of cells jostling for a position to carry out a host of specialized and often crucial tasks. A new Yale study, published the week of March 7 in the journal of the Proceedings of the National Academy of Sciences suggests these “friendly” bacteria aggressively stake out their territory, injecting lethal toxins into any other cells that dare bump into them.
“These bacteria are friendly to us, but possess an elaborate arsenal to protect their space,” says Aaron Wexler of the Department of Microbial Pathogenesis at the Microbial Sciences Institute at West Campus and lead author of the study. “We’ve come to view this as a way bacteria check up on their neighbors - as if asking ‘Are you the same as me?’”
Gut bacteria have co-evolved in mammals to take on many tasks crucial to health. While we provide the bacteria with nutrients and a warm place to live, they harvest indigestible parts of our diet, produce vitamins we can’t make, fend off dangerous pathogens, and fine-tune our immune systems. Bacteria also help each other - for instance some have evolved to consume byproducts of other species.
Wexler and senior author Andrew Goodman wanted to explore how these cells manage to function together packed into such close proximity. To their surprise, they found bacteria were in almost constant warfare with each other.
They found members of the phylum Bacteroidetes - one of the major groups of bacteria in the gut - have developed mechanisms to “hand-deliver” toxins into neighboring cells and to defend against toxins injected by similar cells. Immunity proteins produced within the bacteria provide defenses against these toxins and ensure co-existence with similar cells. For reasons not well understood, only a subset of members within a given species possesses these defenses.
“Even in the same species the arsenals can be different,” Goodman says. “They are defining who is who at a much finer level than species. It seems to be a way to keep competitors at arm’s length.”
Understanding how these toxins work may one day have clinical relevance, the authors say, given increased understanding of how the disruption of the microbiome can play a role in cancer, obesity, and autoimmune diseases.
Primary funding for the research came from the National Institutes of Health, the Pew Scholars Program, and the Burroughs Wellcome Fund.
The Yale team worked with colleagues from the University of Washington, University of Texas-Austin, University of Maryland, and Memorial Sloan Kettering Cancer Center.
Source: Yale University
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.