Biomedical Engineer Outsmarts HIV

Article

It is estimated that 38 million people worldwide are currently infected with HIV and that 4.1 million more are added each year. For scientists to design treatment therapies that are effective over the long-term it is essential to learn more about how the virus mutates and develops resistance to medications.

New, groundbreaking research by University of Victoria biomedical engineer Stephanie Willerth has significantly advanced the understanding of HIV and how to treat it.

"The virus mutates at a very high rate which is very problematic for HIV patients because the virus eventually develops resistance to medications, explains Willerth, a faculty member with UVics Department of Mechanical Engineering and the Division of Medical Sciences.

Willerth and her team studied approximately 15,000 different versions of the virussomething that has never been done before. This information has allowed them to locate the specific genes of the virus that were resistant to the drugsknowledge that could ultimately help researchers develop more effective treatments for HIV.

Willerth says that the methods she used can be applied to other difficult-to-treat viruses such as swine flu, Ebola, influenza or even staph infections.

"To study all of these different versions we have to replicate them millions of times, especially when it comes to complex viruses like HIV," explains Willerth. "Because this research method requires a large amount of genetic material and there are obvious risks of duplicating highly contagious viruses, scientists have avoided doing this. Our research was unique because of the method we usedwe isolated the genetic material from HIV, so that it was no longer alive, before we replicated it."

After replicating the virus from a small sample obtained from a long-term HIV patient who had developed drug resistance to their treatment, Willerth and her team studied its genetic make-up using "next generation" DNA sequencinga new method that allows researchers to study millions of molecules at a time.

Willerth conducted this post-doctorate research at the University of California Berkeley Lab.

Related Videos
Andrea Flinchum, 2024 president of the Certification Board of Infection Control and Epidemiology, Inc (CBIC) explains the AL-CIP Certification at APIC24
Association for Professionals in Infection Control and Epidemiology  (Image credit: APIC)
Lila Price, CRCST, CER, CHL, the interim manager for HealthTrust Workforce Solutions; and Dannie O. Smith III, BSc, CSPDT, CRCST, CHL, CIS, CER, founder of Surgicaltrey, LLC, and a central processing educator for Valley Health System
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Related Content