It can take just hours after the symptoms appear for someone to die from bacterial meningitis. Now, after years of research, experts at The University of Nottingham have finally discovered how the deadly meningococcal bacteria is able to break through the body’s natural defense mechanism and attack the brain. The discovery could lead to better treatment and vaccines for meningitis and could save the lives of hundreds of children.
Bacterial meningitis in childhood is almost exclusively caused by the respiratory tract pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. The mechanism used by these lethal germs to break through the blood-brain barrier has, until now, been unknown.
The team led by Dlawer Ala’Aldeen, professor of clinical microbiology and head of the Molecular Bacteriology and Immunology Group at the Centre for Biomolecular Sciences, recently discovered that all three pathogens target the same receptor on human cerebrovascular endothelial cells — the specialized filtering system that protects our brain from disease — enabling the organisms to cross the blood-brain barrier.
Their findings, published today in the Journal of Clinical Investigation, suggest that disruption or modulation of this interaction of bacterial adhesins with the receptor might offer unexpectedly broad protection against bacterial meningitis and may provide a therapeutic target for the prevention and treatment of disease.
Ala’Aldeen, who has been studying meningitis and its causes for over 20 years, said: “This is a significant breakthrough which will help us design novel strategies for the prevention and treatment of bacterial meningitis. Identification of the human receptor and bacterial ligands is like identifying a mysterious key and its lock, which will open new doors and pave the way for new discoveries.”
The research, carried out in collaboration with the Department of Infectious Diseases at St. Jude Children’s Research Hospital in Memphis Tennessee, also involved students from the University who have been regular and willing volunteers in the research program.
Ala’Aldeen said, “The ultimate aim is to save lives by protecting the healthy and curing the sick. We are one step closer to new breakthroughs that would prevent disease or its complications. There still is a long way to go before we have the ultimate vaccine and the ultimate treatment of bacterial meningitis.”
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.