ITHACA, N.Y. -- Cornell University scientists are launching a full-scale study on the influence of climate on mosquito populations that transmit diseases such as West Nile virus (WNV) to humans. Funded by a $495,000 Global Programs grant from the National Oceanic and Atmospheric Administration (NOAA), the three-year project is a collaborative effort involving medical entomologists, climatologists, social scientists and risk analysts, as well as local and state health department officials.
"We propose to develop a system for predicting and monitoring risk of mosquito vectors, West Nile virus transmission and human health risk that will be readily usable by public health professionals for decision-making," says Laura Harrington, Cornell assistant professor of entomology and the project's principal investigator. "This system will provide a mechanism for early warning of West Nile virus risk and serve as a model for other existing and future vector-borne disease risks for which vectors are already present in the United States. These risks include the Rift Valley fever, Japanese encephalitis and Ross River viruses."
Arthur T. DeGaetano, Cornell associate professor of climatology and director of the Northeast Regional Climate Center, is a co-principal investigator.
To develop, refine and validate the system, researchers will focus their efforts on New York state, with the view to making the system adaptable to any region. Harrington and DeGaetano hypothesize that a few key climate factors influence and drive WNV transmission dynamics and these key factors can be modeled to accurately predict the risk of WNV transmission to people.
Harrington and Renee R. Anderson, a Cornell Cooperative Extension associate in Cornell's Department of Entomology, will determine the effects of temperature on development of key West Nile mosquito vectors in the laboratory and under realistic field conditions. DeGaetano will develop a forecasting model based on climate to predict periods of vector and pathogen abundance and human risk. Lois Levitan, a Cornell senior extension associate and Environmental Risk Analysis Program leader, will determine the information needs of public health and vector control professionals as it relates to risk analysis. Five public health and vector control officials from across New York state will take part in the project, along with Cornell graduate and undergraduate students.
The study will integrate and expand on data acquired during a 2003 NOAA-funded pilot study. Mosquitoes develop in microhabitats, according to Harrington. The correlation of climate data with microhabitat information provides scientific clues to how mosquito populations develop and age. Older mosquitoes are the carriers of WNV, becoming infected when they feed on "reservoir" animals, such as birds, and undergo an incubation period of the virus lasting five to 14 days. During subsequent blood meals after this incubation period, the mosquitoes inject the virus into humans and animals, where it can multiply and sometimes cause illness. Outdoor temperatures determine both the rate the virus replicates in the mosquito and the rate mosquitoes age.
While mosquitoes can live as long as three or four months in a laboratory, their life span in the wild is much shorter. Thanks to predators and pathogens, the longest the average mosquito can live is probably three to four weeks, says Harrington. During the height of summer heat, a mosquito can age and become a full adult within seven to nine days.
Previous efforts to link climate information and mosquito vector management have failed for a variety of reasons, Harrington says.
"By directly addressing and overcoming the reasons why previous models have failed, the unique group of collaborators assembled for this project will gather the data needed to build realistic, validated and effective models for predicting vector activity and human health risk," she says.
Source: Cornell University
Happy Hand Hygiene Day! Rethinking Glove Use for Safer, Cleaner, and More Ethical Health Care
May 5th 2025Despite their protective role, gloves are often misused in health care settings—undermining hand hygiene, risking patient safety, and worsening environmental impact. Alexandra Peters, PhD, points out that this misuse deserves urgent attention, especially today, World Hand Hygiene Day.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.