Defense Mechanism Against Bacteria and Fungi Deciphered

Article

Under standard laboratory conditions, the human beta-defensin 1 (hBD-1), a human antibiotic naturally produced in the body, had always shown only little activity against microbes. Nevertheless the human body produces it in remarkable quantities. The solution to the puzzle was the investigation process itself, as the research group led by Dr. Jan Wehkamp at the Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology of the Stuttgart-based Robert Bosch Hospital found out.

Before the research group took a new approach to this research, defensins were usually tested in the presence of oxygen, although little oxygen is present, for example, in the human intestine. Starting out from the discovery that a special antibiotic-activating protein of the human body is diminished in patients with inflammatory bowel diseases, Crohn's Disease and Ulcerative Colitis, the working group investigated how defensins act under low-oxygen conditions. During their investigations the scientists found out that under these conditions hBD-1 unfolds a strong antibiotic activity against lactic acid bacteria and yeast.

Furthermore the researchers discovered that another human protein, thioredoxin, is able to activate beta-defensin 1 even in the presence of oxygen. Moritz Marcinowski and Professor Johannes Buchner from the Department of Chemistry at the Technical University of Munich, used circular dichroism spectroscopy to elucidate the differences between the folded inactive and the unfolded active form of the protein.

Surprisingly, while almost all proteins are active only in their folded form, in the case of the small defensin the opposite is true. To activate the beta-defensin 1 the thioredoxin opens the three disulphide bridges that hold the molecule together. The molecule then opens up into the active state. Using this mechanism the body has the opportunity to selectively activate the defensin.

So far the cause of inflammatory bowel disease is unclear. Genetic as well as environmental factors seem to play a role, finally leading to a weakening of the antimicrobial barrier, which is mainly mediated by defensins. Accordingly the identified mechanism might contribute to the development of new therapies to treat affected patients.

The presented work is the result of a cooperation project with six participating centers, led by Emmy Noether junior research group leader Dr. Jan Wehkamp. In addition to five researchers from Stuttgart (Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology and the Robert Bosch-Hospital (Bjoern Schroeder, Sabine Nuding, Julia Beisner, Eduard Stange and Jan Wehkamp) the Department of Dermatology at University of Tübingen (Martin Schaller), the Max-Planck-Institute for Developmental Biology in Tübingen (Sandra Groscurth), the Department of Dermatology at University of Kiel (Zhihong Wu), as well as the Department of Chemistry at the Technische Universitaet Muenchen (Moritz Marcinowski and Johannes Buchner) were involved. The work was funded by the Deutsche Forschungsgemeinschaft (Emmy Noether-Program for young researchers, Cluster of Excellence Center for Integrated Protein Science Munich) and by the Robert- Bosch-Foundation.

Reference: Reduction of disulfide bonds unmasks potent antimicrobial activity of human

-defensin 1. B.O. Schroeder, Z. Wu, S. Nuding, S. Groscurth, M. Marcinowski, J. Beisner, J. Buchner, M. Schaller, E.F. Stange, J. Wehkamp, Nature, DOI: 10.1038/nature09674

Recent Videos
Pathogen Playbook Presenter: Sharon Ward-Fore, BS, MS, MT(ASCP), CIC, FAPIC
Mark Wiencek, PhD
Rebecca Crapanzano-Sigafoos, DrPH, CIC, AL-CIP, FAPIC
The CDC’s updated hospital respiratory reporting requirement has added new layers of responsibility for infection preventionists. Karen Jones, MPH, RN, CIC, FAPIC, clinical program manager at Wolters Kluwer, breaks down what it means and how IPs can adapt.
Studying for the CIC using a digital tablet and computer (Adobe Stock 335828989 by NIKCOA)
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Cheron Rojo, BS, FCS, CHL,  CER, CFER, CRCST
Matthias Tschoerner, Dr Sc
Standardizing Cleaning and Disinfection
Related Content