The next big thing in medical diagnostics could be minutes particles of rust, iron oxide, coated with the material from which sand is formed, silicon dioxide. These magnetic nanoparticles, a mere 29 to 230 nanometers across, can be used to trap antibodies to the virus that causes cervical cancer and to the bacteria that causes potentially lethal diarrhea.
According to scientists in Vietnam, it is relatively straightforward to immobilize on nanoparticles, synthetic or monoclonal antibodies that respond to the human papilloma virus, HPV18, and the toxic gut microbe Escherichia coli O157:H7. Once trapped in this way the antibodies can be exposed to a potentially contaminated sample. If pathogen particles are present some will stick to the antibodies and this change can then be detected by a conventional test, or assay. Conventional techniques without the benefit of nanoparticles can be accurate, but the magnetic nanoparticles improve the limits of detection by allowing just these particles to be separated from the sample before carrying out the assay so that residual cells and other substances do not interfere with the test.
E. coli could be detected if it is present in a sample at much lower numbers of bacterial cells than normal allowing contamination to be traced back to source with potentially much greater precision and faster. The improved detection limit for the presence of HPV18 in cells of the cervix could offer a way to screen for cancer of this tissue that reveals problems sooner than standard screening tests and so improve the chances of successful treatment for cervical cancer.
Tran Hoang Hai of the Ho Chi Minh City Institute of Physics and colleagues explain how cervical cancer is the second most common cancer after breast cancer in women worldwide, but the conventional enzyme-linked immunosorbent assay (ELISA) diagnosis does not reveal the presence of cancerous cells at the very earliest stage. The magnetic nanoparticle approach could remedy this situation. Similarly, E. coli O157:H7 is an increasingly common cause of severe diarrhea, which can also lead to kidney failure and sometimes death. Infection spreads very quickly through ingestion of contaminated material, whether food or fecal matter, so a rapid test that can spot contamination early is essential for halting the spread of the disease.
Reference: Immobilising of anti-HPV18 and E. coli O157:H7 antibodies on magnetic silica-coated Fe3O4 for early diagnosis of cervical cancer and diarrhea. Int. J. Nanotechnol, 2011, 8, 383-398.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.