Using disinfectants could cause bacteria to become resistant to antibiotics as well as the disinfectant itself, according to research published in the January issue of Microbiology.The findings could have important implications for how the spread of infection is managed in hospital settings.
Researchers from the National University of Ireland in Galway found that by adding increasing amounts of disinfectant to laboratory cultures of Pseudomonas aeruginosa, the bacteria could adapt to survive not only the disinfectant but also ciprofloxacin -- a commonly-prescribed antibiotic -- even without being exposed to it. The researchers showed that the bacteria had adapted to more efficiently pump out antimicrobial agents (disinfectant and antibiotic) from the bacterial cell. The adapted bacteria also had a mutation in their DNA that allowed them to resist ciprofloxacin-type antibiotics specifically.
P. aeruginosa is an opportunistic bacterium that can cause a wide range of infections in people with weak immune systems and those with diseases such as cystic fibrosis (CF) and diabetes. P. aeruginosa is an important cause of hospital-acquired infections. Disinfectants are used to kill bacteria on surfaces to prevent their spread. If the bacteria manage to survive and go on to infect patients, antibiotics are used to treat them. Bacteria that can resist both these control points may be a serious threat to hospital patients.
Importantly, the study showed that when very small non-lethal amounts of disinfectant were added to the bacteria in culture, the adapted bacteria were more likely to survive compared to the non-adapted bacteria. Dr. Gerard Fleming, who led the study, said, "In principle this means that residue from incorrectly diluted disinfectants left on hospital surfaces could promote the growth of antibiotic-resistant bacteria. What is more worrying is that bacteria seem to be able to adapt to resist antibiotics without even being exposed to them."
Fleming also stressed the importance of studying the environmental factors that might promote antibiotic resistance. "We need to investigate the effects of using more than one type of disinfectant on promoting antibiotic-resistant strains. This will increase the effectiveness of both our first and second lines of defence against hospital-acquired infections," he said.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Spring Into Safety: How Seasonal Deep Cleaning Strengthens Hospital Infection Control
June 13th 2025Rooted in ancient rituals of renewal, spring-cleaning has evolved from cultural tradition to a vital infection prevention strategy in modern hospitals—one that blends seasonal deep cleaning with advanced disinfection to reduce pathogens, improve air quality, and protect patients.