Pinning down an effective way to combat the spread of the human immunodeficiency virus, the viral precursor to AIDS, has long been challenge task for scientists and physicians, because the virus is an elusive one that mutates frequently and, as a result, quickly becomes immune to medication. A team of Drexel University researchers is trying to get one step ahead of the virus with a microbicide theyve created that can trick HIV into popping itself into oblivion.
Its name is DAVEI, which stands for Dual Action Virolytic Entry Inhibitor," and it can pull a fast one on HIV. DAVEI was invented and tested by scientists from Drexels College of Engineering; School of Biomedical Engineering, Science and Health Systems; and College of Medicine, and is the latest in a new generation of HIV treatments that function by specifically destroying the virus without harming healthy cells.
While several molecules that destroy HIV have recently been announced, DAVEI is unique among them by virtue of its design, specificity and high potency, says Dr. Cameron Abrams, a professor in Drexels College of Engineering and a primary investigator of the project.
A team co-led by Abrams and Dr. Irwin Chaiken in the Department of Biochemistry and Molecular Biology in Drexels College of Medicine, and including Dr. Mark Contarino and doctoral students Arangassery Rosemary Bastian and R. V. Kalyana Sundaram, developed the chimeric recombinantly engineered protein that is, a molecule assembled from pieces of other molecules and engineered for a specific purpose, in this case to fight HIV. Their research will be published in the October edition of the American Society for Microbiologys Antimicrobial Agents and Chemotherapy.
The idea behind DAVEI was to design a molecule that hijacks the viruss fusion machinery, the tools it uses to attach to and attack a healthy cell, and trick the virus into destroying itself. HIV invades a healthy cell by first attaching via protein spikes that then collapse to pull viral and cell membranes together, fusing them and allowing the genetic contents of the virus to enter the healthy cell. The cell is rewired by the viral genetic material into producing more viruses instead of performing its normal function, which, in the case of cells infected by HIV, involves normal immunity. AIDS is the result.
We hypothesized that an important role of the fusion machinery is to open the viral membrane when triggered, and it follows that a trigger didnt necessarily have to be a doomed cell, Abrams says. So we envisioned particular ways the components of the viral fusion machinery work and designed a molecule that would trigger it prematurely, Abrams adds.
They designed DAVEI from two main ingredients. One piece, called the Membrane Proximal External Region (MPER), is itself a small piece of the fusion machinery and interacts strongly with viral membranes. The other piece, called cyanovirin, binds to the sugar coating of the protein spike. Working together, the MPER and cyanovirin in DAVEI tweak the fusion machinery in a way that mimics the forces it feels when attached to a cell.
For lack of a better term, DAVEI tricks the virus into thinking it is about to infect a healthy cell, when, in fact, there is nothing there for it to infect, Abrams says. Instead, it releases its genetic payload harmlessly and dies.
Chaikens lab has extensively investigated the molecular mechanisms of HIV-1 envelope protein interactions and structure-based design of agents that fight HIV. The researchers produced DAVEI by recombinant protein engineering and used HIV-1 pseudoviruses to demonstrate that it can physically rupture and irreversibly inactivate the virus particles.
DAVEI and other new-generation virolytic inactivators open up an important opportunity to develop a topical microbicide to block the transmission of HIV, and at the same time provide lead ideas to discover treatment strategies for people who are already infected, Chaiken says. Our hope is that determining the structural driving forces of both inhibitors and viral entry machinery that enable spike inactivation will help to advance molecular designs with increased power, specificity and clinical potential for both prevention and treatment.
Source: Drexel University
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.