Researchers at Vanderbilt University Medical Center and Washington University School of Medicine in St. Louis, Missouri, have isolated a human monoclonal antibody that in a mouse model “markedly reduced” infection by the Zika virus.
The findings may also aid efforts to develop an effective anti-Zika vaccine, said James Crowe Jr., MD, director of the Vanderbilt Vaccine Center. Photo courtesy of Vanderbilt University Medical Center
Researchers at Vanderbilt University Medical Center and Washington University School of Medicine in St. Louis, Missouri, have isolated a human monoclonal antibody that in a mouse model “markedly reduced” infection by the Zika virus.
The antibody, called ZIKV-117, also protected the fetus in pregnant mice infected with the virus, the researchers reported today in the journal Nature. Zika is believed to cause microcephaly, unusually small heads, and other congenital malformations in children born to infected women.
Similar protection studies in primates are warranted, and if the findings hold up, ZIKV-177 could be developed as a protective antibody treatment for pregnant women at risk of Zika infection, the researchers concluded.
The findings may also aid efforts to develop an effective anti-Zika vaccine, said James Crowe Jr., MD, director of the Vanderbilt Vaccine Center and co-corresponding author of the paper with Michael S. Diamond, MD, PhD, at Washington University.
“These naturally occurring human antibodies isolated from humans represent the first medical intervention that prevents Zika infection and damage to fetuses,” said Crowe, who also is Ann Scott Carell Professor in the Departments of Pediatrics and Pathology, Microbiology & Immunology in the Vanderbilt University School of Medicine.
“We’re excited because the data suggests we may have antibody treatments in hand that could be developed for use in pregnant women,” he said.
“The remarkable potency and breadth of inhibition by ZIKV-117 has great promise,” Diamond said, “as it was able to inhibit infection by strains from both Africa and America in cell culture and in animals, including during pregnancy.”
Diamond is associate director of The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs at Washington University.
Zika is a mosquito-borne virus that has emerged as a global public health threat. In addition to its association with congenital birth defects, Zika has been linked to Guillain-Barre syndrome, a neurological disorder that can lead to paralysis and death.
Since a major outbreak was reported in Brazil last year, Zika infections transmitted by mosquitoes have been reported throughout Africa, Asia, the Pacific, and the Americas, including Miami-Dade County, Florida.
During the past 15 years, Crowe and his colleagues have developed a high-efficiency method for isolating human monoclonal antibodies that has enabled to them identify neutralizing antibodies against a wide range of viral infections, from Ebola to HIV.
The Crowe and Diamond laboratories have collaborated recently on several projects including the generation of protective human monoclonal antibodies against Dengue, West Nile, Chikungunya and now Zika viruses.
Monoclonal antibodies are made from a single clone of B cells, a type of white blood cell, that have been fused to myeloma (cancer) cells to form fast-growing “hybridomas.” This allows researchers to quickly generate large quantities of antibodies against specific viral targets.
In the current study, the researchers isolated antibodies from the blood of people who’d been previously infected with the Zika virus in different parts of the world. The antibodies reacted to the envelope or “E” protein on the surface of the virus.
The researchers then generated a variety of monoclonal antibodies. In cell culture studies, they identified one, ZIKV-117, which broadly neutralized several different strains of the virus. In mice infected by the Zika virus, injection of the antibody markedly reduced disease and mortality, and reduced transmission from mother to fetus.
The paper’s first authors were Gopal Sapparapu, PhD, research assistant professor of Pediatrics in the Crowe lab, and by Estefania Fernandez, a graduate student in Diamond’s lab. Nurgun Kose, senior research specialist in Crowe’s lab, made the antibodies.
The research was supported in part by National Institutes of Health grants AI073755 and AI104972.
Source: Vanderbilt University Medical Center
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.