Scientists have revealed a new technique to introduce disease-blocking bacteria into mosquitoes, with promising results that may halt the spread of diseases such as dengue, yellow fever and potentially malaria.
Â
When infected with the bacteria Wolbachia, mosquitoes are unable to spread viruses such as dengue, a disease which kills as many as 40,000 people each year with no vaccines or specific treatments currently available. There have been around 2,400 cases of dengue infection in Northern Australia in recent years.
However, the bacteria has been difficult to spread within the mosquito population because it reduces the mosquitoes ability to lay viable eggs.
Now professor Ary Hoffmann from the University of Melbourne and professor Michale Turelli from the University of California have shown that by introducing an insecticide resistance gene alongside the Wolbachia bacteria into the mosquito, that the insects pass on the disease-blocking bacteria to other mosquitoes faster. The results are published today in the journal Proceedings of the Royal Society B.
This could mean that the spread of disease can be stopped faster, and less infected mosquitoes would need to be released in a disease control program said Professor Ary Hoffmann from the University of Melbournes Bio21 Institute and Department of Genetics.
Our results show that Wolbachia-based strategies could hold the key to a cheap and sustainable approach to disease control, Hoffmann says.
Wolbachia bacteria strains live naturally inside up to 70 percent of all insects and are known to protect them against viral infection. The disease-blocking strain of Wolbachia was first discovered in Australian fruit flies in 1988 by Hoffmann, and trials with collaborators at Monash and James Cook Universities in 2011 showed that Wolbachia-infected mosquitoes were unable to spread the dengue virus.
The approach taken in this new work involves adding a pesticide resistance gene to a newer strain of Wolbachia called wMelPop, which is a strong blocker of dengue and other viruses. Insecticide use is very common in dengue and malaria-prone regions and so this strategy should select for the survival of only the Wolbachia-infected mosquitoes, but then these insects would be unable to pass on a virus to humans.
Hoffmann adds that insecticide resistance genes would not spread to the uninfected mosquito populations because a Wolbachia-infected female with a resistance gene will always pass on both the gene and the bacteria to her offspring. Then, when an uninfected female mates with an infected male, the bacterium causes cytoplasmic incompatibility, which leads to the death of embryos.
So the association between resistance and the infection is maintained, the resistance does not move into the rest of the population, and the strategy can utilize insecticides that are no longer part of active mosquito control programs.
Â
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.