Fighting Disease From Within the Mosquito May Halt Debgue, Yellow Fever, Malaria

Article

Scientists have revealed a new technique to introduce disease-blocking bacteria into mosquitoes, with promising results that may halt the spread of diseases such as dengue, yellow fever and potentially malaria.
 
When infected with the bacteria Wolbachia, mosquitoes are unable to spread viruses such as dengue, a disease which kills as many as 40,000 people each year with no vaccines or specific treatments currently available. There have been around 2,400 cases of dengue infection in Northern Australia in recent years.

However, the bacteria has been difficult to spread within the mosquito population because it reduces the mosquitoes ability to lay viable eggs.

Now professor Ary Hoffmann from the University of Melbourne and professor Michale Turelli from the University of California have shown that by introducing an insecticide resistance gene alongside the Wolbachia bacteria into the mosquito, that the insects pass on the disease-blocking bacteria to other mosquitoes faster.  The results are published today in the journal Proceedings of the Royal Society B.

This could mean that the spread of disease can be stopped faster, and less infected mosquitoes would need to be released in a disease control program said Professor Ary Hoffmann from the University of Melbournes Bio21 Institute and Department of Genetics.

Our results show that Wolbachia-based strategies could hold the key to a cheap and sustainable approach to disease control, Hoffmann says.

Wolbachia bacteria strains live naturally inside up to 70 percent of all insects and are known to protect them against viral infection. The disease-blocking strain of Wolbachia was first discovered in Australian fruit flies in 1988 by Hoffmann, and trials with collaborators at Monash and James Cook Universities in 2011 showed that Wolbachia-infected mosquitoes were unable to spread the dengue virus.

The approach taken in this new work involves adding a pesticide resistance gene to a newer strain of Wolbachia called wMelPop, which is a strong blocker of dengue and other viruses. Insecticide use is very common in dengue and malaria-prone regions and so this strategy should select for the survival of only the Wolbachia-infected mosquitoes, but then these insects would be unable to pass on a virus to humans.

Hoffmann adds that insecticide resistance genes would not spread to the uninfected mosquito populations because a Wolbachia-infected female with a resistance gene will always pass on both the gene and the bacteria to her offspring. Then, when an uninfected female mates with an infected male, the bacterium causes cytoplasmic incompatibility, which leads to the death of embryos.

So the association between resistance and the infection is maintained, the resistance does not move into the rest of the population, and the strategy can utilize insecticides that are no longer part of active mosquito control programs.

 

Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content