First-of-Its-Kind West Nile Virus Vaccine Now in Phase I Clinical Trials

Article

A novel investigational West Nile virus vaccine discovered and developed by scientists at the Oregon National Primate Research Center at Oregon Health & Science University is being evaluated in an NIH-sponsored Phase 1, first-in-human, clinical trial at Duke University. Although several early-stage West Nile virus vaccine clinical trials have been completed to date, no human vaccine has been approved for commercial use.

"West Nile virus represents a significant threat to public health in the United States, especially among the immunocompromised and the elderly,” says Mark Slifka, PhD, professor of molecular microbiology and immunology in the OHSU School of Medicine; senior scientist at the Oregon National Primate Research Center at OHSU; and president and chief scientific officer of Najít Technologies, Inc. "We believe our vaccine approach will not only be safe and effective for West Nile virus, but it could also provide significant protection against other important human pathogens, including yellow fever, dengue hemorrhagic fever, and, potentially even Ebola.”

OHSU's investigational West Nile virus vaccine candidate was created using a proprietary, peroxide-based platform called HydroVaxTM. The platform is unique in that it is the first vaccine production system to demonstrate that hydrogen peroxide can inactivate viruses for use as vaccines while still maintaining key immunogenic, or immune-system triggering, structures. Older vaccine production systems use formaldehyde-fixed 'dead' forms of the virus, but this often results in substantial damage to the native surface structures of the virus.

To develop a clinical-grade West Nile virus vaccine for the Phase I clinical trial, Slifka and colleagues worked with Michael Diamond, MD, PhD, an expert on West Nile virus immunology and pathogenesis at Washington University in St. Louis, and Ian Amanna, PhD, associate vice president for research at Najít Technologies, Inc., an Oregon-based OHSU spinoff company that serves as the researchers' industry partner.

"The generation of a safe and effective inactivated vaccine against West Nile virus could minimize disease, long-term disability and even death in vulnerable individuals,” says Diamond. "This vaccine showed great promise in pre-clinical models in animals. We are optimistic that it will stimulate protective immune responses that control infection and disease. This first trial in humans is an important milestone."

n 2009, Slifka, Diamond, Amanna and colleagues received a $7.5 million grant from the National Institutes of Health to develop a new West Nile Vaccine. In 2012, using a mouse model, the researchers proved their proprietary HydroVax platform was a safer and more effective method for creating vaccines than current vaccine production systems. In 2013, the Diamond laboratory showed that HydroVax could protect aged mice from lethal West Nile virus infection. Last month, an independent group of researchers led by Yoshiro Kawaoka, PhD, at the University of Wisconsin used HydroVax to develop an Ebola vaccine that provided complete protection against lethal infection in a primate model.

"Development of this vaccine platform has truly been a team effort. We had virologists, immunologists, and vaccinologists all working together with regulatory consultants and manufacturing experts. When coupled with substantial input by the NIH and the FDA, we were able to develop this exciting new vaccine candidate for West Nile virus,” says Slifka.

West Nile virus is a mosquito-borne human pathogen that has become endemic in North America and causes substantial disease and death. Some estimate that as many as 3 million West Nile virus infections have occurred in the United States since 1999. A total of 47 states and the District of Columbia reported West Nile virus infections in people, birds or mosquitoes in 2014, according to the Centers for Disease Control and Prevention.

"It is truly gratifying to see this novel approach to vaccine development discovered by Dr. Slifka and his colleagues take this critical step toward treatment of infectious diseases in humans,” says Dan Dorsa, PhD, senior vice president for research at OHSU.

Source: Oregon Health & Science University



Recent Videos
Lindsay K. Weir, MPH, CIC, Lead Infection Preventionist/Infection Preventionist III
•	Rebecca (Bartles) Crapanzano-Sigafoos, DrPH, MPH, CIC, FAPIC (corresponding author), executive director of APIC’s Center for Research, Practice, and Innovation, and lead author of the study.
Infection Control Today's Infection Intel: Staying Ahead With Company Updates and Product Innovations.
COVID-19 presentations at IDWeek in Las Angeles, California by Invivyd.   (Adobe Stock 333039083 by Production Perig)
Long COVID and Other Post-Viral Syndromes
Meet Jenny Hayes, MSN, RN, CIC, CAIP, CASSPT.
Infection Control Today Editorial Advisory Board: Fibi Attia, MD, MPH, CIC.
Andrea Thomas, PhD, DVM, MSc, BSc, director of epidemiology at BlueDot
mpox   (Adobe Stock 924156809 by Andreas Prott)
Meet Alexander Sundermann, DrPH, CIC, FAPIC.
Related Content