We all have E. coli bacteria in our gut but each of us carries a version that is genetically slightly different. The same can be said of most gut microbes: our own gut metagenome, that is the sum of all the genomes of all our gut microbes, appears to be really specific to each of us, and to remain stable over time. For the first time, researchers from the European Molecular Biology Laboratory (EMBL) have studied this metagenome at such a high resolution that individual mutations in the various strains could be analyzed.
Their findings, published in Nature, could have widespread consequences in medicine: gut microbes are known to be essential for functions as vital as digesting food or providing vitamins, but can also be involved in diseases if they carry certain mutations.
Â
The scientists analysed the gut metagenome of 207 individuals from Europe and the U.S., matching more than 7 billion pieces of DNA (of 100 lettres each) to the genomes of our most abundant gut microbial species.Â
This large-scale analysis showed that, at least when healthy, we carry a unique set of bacterial strains and their mutations in our gut, over a long time, explains Peer Bork who led the study at EMBL. It is like a second genetic signature, but one that probably does not come from our parents but that we acquire from the environment in early childhood.
Â
When comparing the specific mutations from the same individual over time, the researchers found that the metagenome remains stable for at least one year, and probably much longer when the individuals are healthy. Results also show that there is only little geographic difference when comparing metagenomes of European with North-American individuals. This indicates that gradual adaptation is possible.
Â
For each individual, approximately 6 billion DNA letters of their gut metagenome have been analysed, many more than the 3.3 billion DNA letters of human DNA that we inherit from each of our parents. These 6 billion DNA letters belong to hundreds of microbes, each with thousands of different strains or variants: mapping each DNA fragment of the metagenome to its right place, in the right bacterial genome, is extremely complex. To achieve this breakthrough and carry the analysis down to the single DNA letter, scientists had to develop various new computational methods. In the current study more than 10 million mutations have been detected in the 207 individuals.
Â
All these detailed data is now stored in public databases, such as dbSNP, freely available to the scientific community. These findings could lead to the development of new approaches in the identification of gut diseases, pathogens or antibiotic resistance. On the longer term, they may also open new avenues for personalized therapies.
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.