The ever-changing “head” of an influenza virus protein has an unexpected Achilles heel, report scientists funded by the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health. The team discovered and characterized the structure of a naturally occurring human antibody that recognizes and disrupts a portion of the hemagglutinin (HA) protein that the virus uses to enter and infect cells. The investigators determined that the antibody, FluA-20, binds tightly to an area on the globular head of the HA protein that is only very briefly accessible to antibody attack. The site was not expected to be vulnerable to such a strike.
James E. Crowe, Jr., MD, of Vanderbilt University Medical Center, Nashville, Tennessee, and Ian A. Wilson, D. Phil., of the Scripps Research Institute, San Diego, led the team. They isolated FluA-20 antibody from a person who had received many influenza immunizations. In a series of experiments, they showed that FluA-20 can “reach into” an otherwise inaccessible part of the three-part HA trimer molecule and cause it to fall apart, thus preventing the spread of virus from cell to cell. This discovery came as a surprise because this region of trimeric HA was thought to be stable and inaccessible to antibodies. Moreover, this region - unlike the rest of HA’s head - varies little from strain to strain. In theory, antibody-based therapeutics directed at that precise region would be effective against many strains of influenza A virus. Similarly, vaccines designed to elicit antibodies against this target might provide long-lasting protection against any influenza strain, potentially eliminating the need for annual seasonal influenza vaccination.
In mouse studies, FluA-20 prevented infection or illness when the animals were exposed to four different influenza A viral subtypes that cause disease in humans. Two viruses used in the experiments, H1N1 and H5N1, are Group 1 influenza subtypes, while the two others, H3N2 and H7N9, are members of Group 2. Current influenza vaccines must contain viral components from both subtypes to elicit matching antibodies. A single vaccine able to generate potent antibodies against members of both groups could provide broad multi-year protection against influenza.
Reference: Bangaru S, et al. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell DOI: 10.1016/j.cell.2019.04.011 (2019).
Source: National Institutes of Health (NIH)
Navigating the Confluence of Respiratory Pathogens: Preparing for the Winter Triple Threat
September 30th 2023Medical investigators are concerned about a triple threat this winter with COVID-19, influenza, and RSV. Vaccination is crucial, but distribution challenges remain. Wearing masks, hand hygiene, and ventilation is important to prevent infections. Hospitals need comprehensive plans to respond efficiently.
Low Vaccination Concerns Highlight Need for Fall and Winter 2023 Vaccination Campaigns
September 28th 2023Cases of COVID-19, RSV, and influenza are expected to rise this fall and winter season; yet, the number of people who plan on getting the vaccines for each of the infections remains low, according to the NFID announcement today.
Evolving Symptomatology: Respiratory Viruses in the Era of COVID-19 Variants
September 27th 2023As COVID-19 restrictions eased up, other respiratory viruses began circulating alongside SARS-CoV-2. It's crucial to identify cases and understand the symptoms of these infections to track the evolution of the virus and what health care workers should look out for.
Poll: What Minimum Educational Requirement Should Infection Preventionists Have?
September 25th 2023Many infection preventionists (IPs) disagree on the minimum requirement to have the IP position. Let Infection Control Today know your opinion. Answer this poll, and send your thoughts to Senior Editor Tori Whitacre Martonicz at tmartonicz@mjhlifesciences.com.
How to Prepare For Possible “Tripledemic” of RSV, Influenza, and SARS-CoV-2
September 25th 2023The interaction between the respiratory viruses SARS-CoV-2, influenza, and RSV, poses ongoing challenges. Personal protective measures, testing, and vaccination are critical components of our strategy to mitigate the impact of these viruses.
2 Clarke Drive
Cranbury, NJ 08512