The immune system appears to put a premium on maintaining lung function in infants infected with the influenza virus by mounting a rapid response to repair damaged cells, according to research led by St. Jude Children’s Research Hospital. The findings appear today in the scientific journal Immunity.
Researchers reported evidence that unconventional T cells play a pivotal role in protecting infants from serious, possibly fatal, flu complications. Rather than fueling inflammation, the unconventional T cells triggered a biochemical cascade that increased levels of a growth hormone essential for repair of lung cells damaged by the infection.
“The stakes are higher for infants with flu infections than for older children and adults,” said corresponding author Paul Thomas, Ph.D., a member of the St. Jude Department of Immunology. “Flu is an acute respiratory infection. Compared to adults, infant lungs are smaller and young children are more likely to develop severe, sometimes deadly complications, that require hospitalization and lead to higher mortality rates.
“This study suggests the immune response to flu infections varies between infants and older patients and uses a distinct route for repair and restoration of lung function,” he said. “The work also identifies a pathway to target in the future using therapies to ease flu complications in infants.”
Infant T cells T cells help the immune system mount and regulate the response to viruses and other threats. The cells are classified partly based on protein chains that make up the cell surface receptors. One type of unconventional T cell receptor has gamma (γ) and delta (ê½) protein chains. Conventional T cell receptors have different proteins.
While conventional T cells are developmentally immature at birth, γδ T cells develop before birth and are ready to respond rapidly to a wide range of infectious agents. The γê½ T cells are concentrated in the cells lining the lungs, gut, skin and other barrier tissues.
The role of γê½ T cells in combating flu, particularly in infants and young children, was unclear. In fact, based on previous research, γê½ T cells were more associated with driving inflammation than with promoting cell repair.
Promoting repair But results of this research told a different story. Thomas and his colleagues reported the γê½ T cells that accumulated in response to flu infection in week-old mice produced increased amounts of a signaling protein (cytokine) called interleukin-17A. Investigators showed how increased IL-17A fueled increased production of another signaling protein, the cytokine interleukin-33 in the epithelial cells lining the lungs. IL-33 recruits other immune cells, including regulatory T cells and innate lymphoid cell. These immune cells produce the growth factor amphiregulin, which promotes cell repair.
Loss of γê½ T cells did not affect the ability of newborn mice to eliminate the flu virus or to produce interferon-γ, a cytokine that promotes inflammation. However, death rates were higher in the mice lacking γê½ T cells that produced IL-17A or the gene for IL-33.
Researchers also found evidence of the same system at work in young flu patients. An analysis of nasal fluid from 25 infants with confirmed flu infections revealed that IL-17A, IL-33 and amphiregulin levels were correlated. Increased IL-17A was also associated with better patient outcomes.
“Previous research has suggested that γê½ T cells did not play a significant role in flu infections, particularly in adults,” said first author Xi-zhi Guo, a graduate student in Thomas’ laboratory. “But we thought that might be because γê½ T cells are special. They develop in utero and maybe their role is to help protect right after birth while conventional T cells are still developing.”
Thomas added: “These results suggest the body utilizes a distinct mechanism for tissue repair and restoration of lung function in infants compared to adults.”
The other authors are Pradyot Dash, Jeremy Chase Crawford, E. Kaitlynn Allen, Anthony Zamora, David Boyd, Susu Duan, Resha Bajrachaya, Walid Awad, Peter Vogel and Thirumala-Devi Kanneganti, all of St. Jude; and Nopporn Apiwattanakul of Mahidol University, Bangkok.
The research is funded in part by a grant (AI121832) from the National Institutes of Health; a contract (HHSN272201400006C) from the National Institute of Allergy and Infectious Diseases, part of the NIH; the Hartwell Foundation Individual Biomedical Research Award; and ALSAC, the fundraising and awareness organization of St. Jude.
Source: St. Jude Children's Research Hospital
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.