Key Mechanism Behind Herpes is Revealed

Article

Researchers at Lund University in Sweden have for the first time managed to measure the internal pressure that enables the herpes virus to infect cells in the human body. The discovery paves the way for the development of new medicines to combat viral infections. The results indicate good chances to stop herpes infections in the future.

A virus comprises a thin shell of protein, within which are its genes. A long-standing theory has been that a virus has high internal pressure because it is so tightly packed with genetic material. The pressure means that they can infect a cell by ejecting the genes at high force and speed. The cell is then duped into becoming a small 'virus factory' that produces new viruses, multiplying the number. However, no one has previously succeeded in measuring the internal pressure of a virus that can infect humans.

Biochemist Alex Evilevitch from Lund University and Carnegie Mellon University in Pittsburgh, has measured the pressure inside the herpes virus HSV-1 (herpes simplex virus 1) together with a research team in the U.S. The study has been published in the Journal of the American Chemical Society, JACS.

"The pressure explains the way all eight known herpes viruses that infect humans inject their genes into our cells," says Evilevitch.

This includes both of the two most common forms of herpes, which cause cold sores and genital herpes, as well as Varicella zostervirus, which causes chickenpox and shingles, Epstein-Barr virus, which leads to glandular fever, and viruses linked to various forms of cancer.In previous studies, Evilevitch has also demonstrated that bacteriophages, viruses that infect bacteria, have a high internal pressure. Bacteriophages and herpes viruses separated in evolution billions of years ago, but have retained the same pressure-driven method of ejecting their genes. Evilevitch therefore believes this must be a key mechanism for viral infection.

The discovery could lead to new drugs. The medication that exists to combat viral infections is very specialised and if a virus mutates, which often happens, the medicine can become less effective. However, if a treatment could be developed that reduces the pressure within the virus shell, it would probably be possible to fight many different types of viral infection with the same drug. In addition, the medication would work even if the virus mutated, because mutations do not affect the internal pressure of a virus.

"The results of the present study are the first step towards the goal of developing a drug of this type, and we already have positive preliminary data that shows that the herpes infection can be stopped. It feels great to know that this research will help to fight infections that are as yet incurable," says Evilevitch.

 The study was funded by the Swedish Research Council, the National Science Foundation and the National Institutes of Health (NIH).

Recent Videos
Mark Wiencek, PhD
Rebecca Crapanzano-Sigafoos, DrPH, CIC, AL-CIP, FAPIC
The CDC’s updated hospital respiratory reporting requirement has added new layers of responsibility for infection preventionists. Karen Jones, MPH, RN, CIC, FAPIC, clinical program manager at Wolters Kluwer, breaks down what it means and how IPs can adapt.
Studying for the CIC using a digital tablet and computer (Adobe Stock 335828989 by NIKCOA)
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Cheron Rojo, BS, FCS, CHL,  CER, CFER, CRCST
Matthias Tschoerner, Dr Sc
Standardizing Cleaning and Disinfection
Concept images of Far-UVC  (Adobe Stock 316993517 by hopenv)
Related Content