Lyme borreliosis is a disease caused by bacteria of the genus Borrelia that are transmitted by a bite from a tick of the genus Ixodes. Scientists from the Institut Pasteur used mice to study the transmission of bacteria by ticks infected with various European and North American species of Borrelia. They found evidence of rapid bacterial transmission following a bite, with infection occurring within 24 hours of an adult tick bite and sometimes even sooner for nymph bites. This is a timely reminder of the importance of removing ticks as soon as possible after being bitten to prevent infection.
Lyme borreliosis is the most common vector-borne disease in Europe. It is caused by spirochetes belonging to the Borrelia burgdorferi sensu lato complex. This complex includes several species that are pathogenic for humans: Borrelia burgdorferi sensu stricto, B. afzelii, B. garinii, B. bavariensis, B. spielmanii, B. valaisiana and B. lusitaniae. The bacteria are transmitted through a bite from a hard tick of the genus Ixodes - in Europe, primarily Ixodes ricinus. Ticks can infect a wide variety of hosts. Humans are considered to be an accidental host; transmission can occur if they come into contact with an environment favorable to ticks.
Ticks have three lifecycle stages that can bite humans - larva, nymph and adult -, but bacteria are usually transmitted through bites from nymphs, which are higher in density and often go unnoticed because of their small size.
The amount of time a tick must remain attached to transmit bacteria to the vertebrate host is an essential parameter in assessing the risk of transmission and identifying measures to prevent infection. It is generally accepted that the longer a tick remains attached, the higher the risk of transmission. In Europe, it is regularly stated that there is a real risk of transmission only after 24 hours of attachment.
In this study, we used a mouse model to determine the kinetics of infection by Ixodes ricinus ticks (nymphs and adult females) infected with various European and North American strains or species of Borrelia. We also compared the dissemination of various strains and species of Borrelia by different modes of inoculation (via infected ticks or by injection of bacteria).
Unlike the American strains, all the European species of B. burgdorferi that we studied were detected in the salivary glands of adult ticks before a blood meal, suggesting the possibility of rapid transmission of the bacteria following a bite. The results were consistent with this theory: infection occurred within 24 hours of a bite from an adult tick. Moreover, our analysis shows that nymphs infected by European species of B. burgdorferi are capable of transmitting these pathogens within 12 hours of attachment. Our study proves that B. burgdorferi can be transmitted more quickly than stated in the literature. It is therefore vital to remove ticks as soon as possible after being bitten to prevent infection.
Furthermore, the study shows that the tropism of Borrelia varies depending on the strain and species studied, which explains the variety of clinical manifestations of Lyme borreliosis. We also demonstrate a difference in the tropism of Borrelia following a tick bite, confirming the role of tick saliva in the efficacy of infection and dissemination in vertebrate hosts.
Source: Institut Pasteur
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.