Mesoporous Magnesium Carbonate Material Shown to Inhibit Bacteria Without Penicillin

Article

In a study published in ACS Omega, researchers at Uppsala University have shown that the mesoporous magnesium carbonate Upsalite® exerts strong bacteriostatic effect on Staphylococcus epidermidis.

Staphylococcus epidermidisis an opportunistic bacterium that that has received the most attention for causing hospital acquired infections (HAIs), and can readily become resistant to antibiotics. It is also associated with acne as well as infections of intravascular devices and complications in patients with implanted prosthetic material. The results open up for development of materials inhibiting bacterial growth without the use of antibiotics for dermal applications.

Porous materials are abundant in nature; wood, rocks and cancellous bone are some examples of such materials. In recent years, researchers have shown increased attention to porous materials, especially mesoporous materials where the pores are between 2 and 50 nanometers in diameter. Today such materials are developed for applications including delivery of medicines, moisture adsorption and wastewater cleaning. For many of these applications it is important to know how the materials affect biological entities such as different cells and bacteria.

Upsalite® is a mesoporous magnesium carbonate discovered in 2013 by researchers at Uppsala University.

The material has previously been shown to be skin-friendly and to be a promising excipient for formulation of poorly soluble drugs.

In a just published article, in the journal ACS Omega, researchers at Uppsala University show that Upsalite® exerts strong bacteriostatic effect on Staphylococcus epidermidis. This open up new possibilities for Upsalite®, especially in certain dermal applications where an inhibition of bacterial growth is desirable.

"These newly found bacteriostatic properties combined with the ability to load and release molecules, for example fragrances from the pores in the material are highly interesting for many applications," says Maria Strømme, a professor in the Department of Engineering Sciences, Nano Technology and Functional Materials one of the authors behind the study.

Source: Uppsala University
 



Recent Videos
Cameron Memorial Community Hospital Series With ICT
Ambassador Deborah L. Birx, MD, senior fellow of the George W. Bush Presidential Center
Cameron Memorial Community Hospital series with ICT  (Image Credit: CMCH)
Cameron Memorial Community Hospital series with ICT  (Image Credit: CMCH)
Cameron Memorial Community Hospital series with ICT (Image Credit: CMCH)
Cameron Memorial Community Hospital series with ICT (Image Credit: CMCH)
Cameron Memorial Community Hospital series with ICT (Image Credit: CMCH)
Isis Lamphier, MPH, MHA, CIC; Tori Whitacre Martonicz, MA; and Heather Stoltzfus, MPH, RN, CIC, at APIC Conference and Expo 2024 (Photo courtesy of Tori Whitacre Martonicz)
Lindsay K. Weir, MPH, CIC, Lead Infection Preventionist/Infection Preventionist III
•	Rebecca (Bartles) Crapanzano-Sigafoos, DrPH, MPH, CIC, FAPIC (corresponding author), executive director of APIC’s Center for Research, Practice, and Innovation, and lead author of the study.
Related Content