Scientists have identified a gene that could potentially open the door for the development of new treatments of the lethal disease sepsis.
Co-author Linda Fitzgerald is shown with a multi-pipettor at the Australian Phenomics Centre. Courtesy of Stuart Hay, ANU
Scientists have identified a gene that could potentially open the door for the development of new treatments of the lethal disease sepsis.
Researchers from The Australian National University (ANU) and the Garvan Institute of Medical Research worked with Genentech, a leading United States biotechnology company, to identify a gene that triggers the inflammatory condition that can lead to the full-body infection sepsis.
"Isolating the gene so quickly was a triumph for the team," says professor Simon Foote, director of the John Curtin School of Medical Research (JCSMR) at ANU.
Sepsis is a severe whole-body infection that kills an estimated 1 million people in the United States alone each year. It occurs as a complication to an existing infection, and if not treated quickly can lead to septic shock and multiple organ failure, with death rates as high as 50 per cent.
Professor Foote acknowledged the vital support of the Australian government's National Collaborative Research Infrastructure Strategy in setting up the Australian Phenomics Facility at JCSMR, where the gene was identified.
Researchers were aware that sepsis occurs when molecules known as lipopolysaccharides (LPS) on the surface of some bacteria infiltrate cells, triggering an immune response that causes the cells to self-destruct. But exactly how the self-destruct button was pressed remained a mystery.
The team found the protein Gasdermin-D plays a critical role in the pathway to sepsis.
Scientists at Genentech showed that Gasdermin-D usually exists in cells in an inactive form. When the LPS molecules enter the cells they trigger an enzyme called caspase-11, a kind of chemical hatchet, to lop the protective chemical cap off Gasdermin-D, which in turn leads the cells to self-destruct.
The team at the Australian Phenomics Facility then screened thousands of genes with a large-scale forward genetics discovery platform and in a little over a year had isolated the gene that produces Gasdermin-D.
Nobuhiko Kayagaki, PhD, senior scientist from Genentech, said the work will help researchers understand and treat other diseases as well as sepsis.
"The identification of Gasdermin-D can give us a better understanding not only of lethal sepsis, but also of multiple other inflammatory diseases," he says.
Professor Chris Goodnow, from ANU and Garvan Institute of Medical Research was a co-author on the research paper, which was published in Nature.
"This finding is a key that could potentially unlock our ability to shutdown this killer disease before it gets to a life-threatening stage," Goodnow adds.
Source: Australian National University
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.