A trio of studies being published today in the journals Science and Cell describes advances toward the development of an HIV vaccine. The three study teams all demonstrated techniques for stimulating animal cells to produce antibodies that either could stop HIV from infecting human cells in the laboratory or had the potential to evolve into such antibodies. Each of the research teams received funding from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
In one study, published in Science, researchers demonstrate that a laboratory-designed molecular complex can stimulate rabbits and monkeys to produce powerful neutralizing antibodies against a tough-to-neutralize HIV strain. The complex is similar to the part of HIV that binds to cells--a structure that has been difficult to copy as the kind of stand-alone molecule that an HIV vaccine potentially would need. This study was jointly led by John P. Moore, PhD, of Weill Medical College of Cornell University, and Roger W. Sanders, PhD, of the Academic Medical Center, Amsterdam, and the Weill Medical College.
In another study, published in Cell, scientists took the first step toward confirming the prevailing hypothesis of how an HIV vaccine will need to be designed to elicit antibodies that stop a wide range of HIV strains from infecting human cells. The researchers demonstrated in genetically modified mice that an HIV vaccine regimen likely would need to expose the immune system to one type of protein to elicit a nascent antibody with the potential to be broadly neutralizing, and then present another type of protein later on to coax a more mature form of the antibody toward final development. This study was led by Michel C. Nussenzweig, MD, PhD, of the Howard Hughes Medical Institute at The Rockefeller Universiy, and William R. Schief, PhD, of the Scripps Research Institute.
In the third study, published in Science, researchers used an engineered protein to stimulate B cells in genetically modified mice to produce antibodies that are precursors of the NIAID-discovered VRC01 antibody, which can neutralize a wide range of HIV strains. This study provides strong evidence that the engineered protein can kick off the production of VRC01-class broadly neutralizing antibodies in the scientists' mouse model by targeting VRC01-class progenitor cells and has potential to do the same in humans. The research was led by David Nemazee, PhD, William R. Schief, PhD, and Dennis R. Burton of the Scripps Research Institute.
Together, the three papers represent an important starting point for developing HIV vaccines that can elicit broadly neutralizing antibodies in people.
References:
P Dosenovic et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell DOI: 10.1016/j.cell.2015.06.003 (2015).
JG Jardine et al. Priming a broadly neutralizing antibody response to HIV using a germline-targeting immunogen. Science DOI: 10.1126/science.aac5894 (2015).
RW Sanders et al. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science DOI: 10.1126/science.aac4223 (2015).
Source: NIH/National Institute of Allergy and Infectious Diseases
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.