An experimental vaccine against human cytomegalovirus (CMV) infection, which endangers the developing fetus, organ transplant recipients, patients with HIV and others who have a weakened immune system, proved safe and more effective than previous vaccines developed to prevent infection by the ubiquitous virus.
The first-of-its-kind approach to preventing human CMV infection, developed by a team of scientists at UC Davis and the University of Alabama, Birmingham, induced broader immunological protection in an animal model. The research study will appear in the November issue of the Journal of Virology.
Development of a CMV vaccine has been ranked as the highest priority by the Institute of Medicine, an independent agency of the National Academy of Science, because of the lives it would save and the disabilities it would prevent, according to the CDC.
"Weve completed the first step in developing a vaccine to protect people against CMV by interfering with the viruss attempts to enter and infect cells in the body, says Peter A. Barry, a professor of pathology and laboratory medicine at the UC Davis School of Medicine and lead author of the study. Barry also is a member of the faculty at the Center for Comparative Medicine and a staff scientist at the California National Primate Research Center at UC Davis.
CMV is a type of herpes virus that is spread through close contact with the saliva, urine or other body fluids of a person infected with the virus. Most CMV infections are not diagnosed because the virus typically causes few, if any, symptoms. As a result, most people infected with CMV are unaware that they harbor the virus a condition that is of most concern among pregnant women, who are at risk for transmitting the virus to the fetus. Children who are congenitally infected with CMV may have cognitive and other developmental disabilities, including hearing loss and blindness.
CMV is the most common viral cause of congenital defects in the U.S. About 1 in 150 children in the U.S. is born with congenital CMV. While most of these children will not develop symptoms or problems, about 1 of every 5 children with congenital CMV infection a total of 5,000 children each year will develop hearing loss or developmental disabilities due to the infection, according to the U.S. Centers for Disease Control and Prevention (CDC).
CMV also can infect animals, including rodents and rhesus macaque monkeys and other non-human primates. However, the CMV species found in animals differs from human CMV and has not been reported to cause human disease.
Because so many previous vaccine approaches failed to provide complete protection against CMV infection, Barry and his collaborators adopted an out-of-the-box approach when designing the new vaccine.
They focused on CMVs ability to gain a lifelong foothold in the body, a stage of the viruss life cycle that no other research lab has targeted in research on potential CMV vaccines.
CMV is not like the influenza virus, which our immune systems can successfully clear from our bodies. CMV infection is persistent, Barry says. Once youre infected, youre always infected.
The viruss persistence and ability to infect individuals without creating obvious symptoms of infection help explain why CMV can be found in 50 to 80 percent of people under the age of 40.
The key to CMVs persistence, Barry and his colleagues theorized, is interleukin-10 (IL-10), the master regulator of the immune system, which works to rein in an over-zealous immune response to an invading pathogen.
Barry previously discovered that early in its evolutionary history CMV hijacked IL-10 and incorporated its genes into the viruss own DNA code. As a result, CMV can manipulate the bodys normal immune response to the virus.
In developing their novel vaccine strategy, the researchers focused on neutralizing CMVs own IL-10 so that the immune defense system was again capable of responding vigorously and effectively to the presence of the virus.
We found that the animals did not become infected because, as a result of the vaccine, their immune systems generated neutralizing antibodies that prevented CMV from entering and infecting connective tissue cells, epithelial cells and other major cell types that the virus targets, says Barry.
The vaccine also created immunological memory, which enables the immune system to respond quickly and effectively whenever CMV re-infection occurs, he says.
Based on these positive results, the researchers will evaluate the vaccines effectiveness and safety in an experimental setting that allows CMV-infected and vaccinated animals to interact, transmitting the virus as it typically would in the wild. By comparing rates of CMV infection in the vaccinated and non-vaccinated animals, the research team will determine whether the vaccine alters the natural course of CMV infection and should be considered for clinical studies with humans.
The research was supported by grants from the National Institutes of Health (R01 AI49342, RO1 AI047300 and 355 AI047300-S1), the Margaret Deterding Infectious Disease Research Support Fund and the California National Primate Research Center (P51356 OD011107).
Source: UC Davis Health System
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.