Aiming to take "clean" to a whole new level, researchers at the University of California at Berkeley and the University of Maryland at College Park have teamed up to study how low-temperature plasmas can deactivate potentially dangerous biomolecules left behind by conventional sterilization methods. Using low-temperature plasmas is a promising technique for sterilization and deactivation of surgical instruments and medical devices, but the researchers say its effectiveness isn't fully understood yet. The researchers will present their findings at the AVS Symposium, held Oct. 30 to Nov. 4, in Nashville, Tenn.
"Bacteria are known to create virulence factors biomolecules expressed and secreted by pathogens even if they have been killed," says David Graves, a professor working on the research at UC Berkeley's Department of Chemical and Biomolecular Engineering. These molecules are not always inactivated by conventional sterilization methods, such as heating surgical equipment in an autoclave, and can cause severe medical problems.
The misfolded proteins called "prions" that are thought to cause mad cow disease are one well-known example of harmful biomolecules, Graves says. "These molecules may not be inactivated by conventional autoclaves or other methods of disinfection or sterilization," he says. "In some cases, expensive endoscopes used in the brain must be discarded after a single use because the only way to reliably decontaminate them would destroy them."
Another harmful biomolecule is called lipopolysaccharide (LPS), which are found in the membranes of E. coli bacteria. In humans, LPS can initiate an immune response that includes fever, hypotension, and respiratory dysfunction, and may even lead to multiple organ failure and death.
Graves' research team, in conjunction with a group led by Gottlieb Oehrlein at the University of Maryland in College Park has focused their attention on Lipid A, the major immune-stimulating region of LPS. The researchers exposed Lipid A to the effects of low-temperature plasmas using a vacuum-beam system.
"Low-temperature plasma generates vacuum ultraviolet photons, ions/electrons, and radicals that are known to be able to deactivate these molecules even at low temperature," notes Graves. "However, the mechanisms by which they do this [are] poorly understood, so we can't be sure when they work and when they don't. Our measurements and calculations are designed to reveal this information."
One of the biggest challenges, Oehrlein says, was producing samples of lipopolysaccharide and Lipid A that were compatible with the equipment typically used to study plasma-surface interactions. "The collaboration of Professor Joonil Seog, who is an expert on biological assay methodologies and characterization, has been crucial in this respect," Oehrlein notes. The scientists' results suggest that plasma-generated vacuum ultraviolet light can reduce the toxicity of Lipid A. "We have been surprised by the high sensitivity of endotoxins to UV or vacuum UV irradiation," says Oehrlein. The results mean that the ability of plasma to sterilize equipment might strongly depend on what the plasma is made of, since plasma optical emissions vary based on plasma compositions. As a next step, Oehrlein says that his group plans to focus their efforts on understanding the influence of plasma-generated radicals on the deactivation of biomolecules.
Both groups' results are a good indication that "clean" can indeed be redefined.
Unmasking Vaccine Myths: Dr Marschall Runge on Measles, Misinformation, and Public Health Solutions
May 29th 2025As measles cases climb across the US, discredited myths continue to undercut public trust in vaccines. In an exclusive interview with Infection Control Today, Michigan Medicine’s Marschall Runge, PhD, confronts misinformation head-on and explores how clinicians can counter it with science, empathy, and community engagement.
Silent Saboteurs: Managing Endotoxins for Sepsis-Free Sterilization
Invisible yet deadly, endotoxins evade traditional sterilization methods, posing significant risks during routine surgeries. Understanding and addressing their threat is critical for patient safety.
Endoscopes and Lumened Instruments: New Studies Highlight Persistent Contamination Risks
May 7th 2025Two new studies reveal troubling contamination in both new endoscopes and cleaned lumened surgical instruments, challenging the reliability of current reprocessing practices and manufacturer guidelines.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.