An Australian research team has discovered how specialized immune cells recognize products of vitamin B synthesis that are unique to bacteria and yeast, triggering the body to fight infection. The finding opens up potential targets to improve treatments or to develop a vaccine for tuberculosis.
The study, jointly led by the University of Melbourne and Monash University and published today in the journal Nature, has revealed for the first time that the highly abundant mucosal associated invariant T cells (MAIT cells), recognise products of vitamin B synthesis from bacteria and yeast in an early step to activating the immune system.
The research revealed how by-products of bacterial vitamin synthesis, including some derived from Folic acid or vitamin B9 and Riboflavin or vitamin B2, could be captured by the immune receptor MR1 thus fine-tuning the activity of MAIT cells.
Dr. Lars Kjer-Nielsen from the University of Melbourne led the five-year study. "Humans are unable to make vitamin B and obtain it mostly from diet. Because bacteria can synthesise vitamin B, our immune system uses this as a point of difference to recognise infection," he says. "Given the relative abundance of the MAIT cells lining mucosal and other surfaces, such as the intestine, the mouth, lungs, it is quite probable that they play a protective role in many infections from thrush to tuberculosis. This is a significant discovery that unravels the long sought target of MAIT cells and their role in immunity to infection."
Professor James McCluskey of the Department of Microbiology and Immunology at the University of Melbourne said the discovery opened up opportunities for vaccine development and other potential therapeutics. "This is a major breakthrough in which Australian researchers have beaten many strong research teams around the world, becoming the first to unlock the mystery of what drives a key component of our immune system," he says.
Monash University's professor Jamie Rossjohn says the findings had major implications for understanding the interplay between gut bacteria and the immune system.
"Some vitamin by-products appear to drive immunity while others dampen it," Rossjohn says.
The next step is to explore whether MAIT cells might also be involved in intestinal or mucosal disorders such as inflammatory bowel disease and irritable bowel syndrome.
"This discovery now cracks open a new field in immunology and we can expect many research groups to focus their attention on this system," Rossjohn adds.
"The discovery also involved collaborators at Melbourne's Bio21 Molecular Science and Biotechnology Institute, Metabolomics Australia and the University of Queensland, reflecting the importance of collaboration between researchers to be globally competitive," McCluskey says.
The research was supported by the Australian Research Council and the National Health and Medical Research Council of Australia.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.