Houston Methodist researchers have discovered a set of immune proteins that facilitate long-lasting immunity against malaria. In a study recently published in Immunity (online Oct. 25), researchers reported that elevated production of specific proteins regulating the immune system within 24 hours of infection was required for a resilient and sustained anti-malaria immunity in mice.
"Nearly half a million people die from malaria every year," said Rongfu Wang, PhD, director of the Center for Inflammation & Epigenetics at Houston Methodist Research Institute. "This is in part due to the lack of an effective malaria vaccine and a limited understanding of the body's immune response during infection. We have identified the immune system pathways activated during infection and potential targets for a malaria vaccine."
Using mouse models, the research team led by Wang carefully dissected pathways in the immune system to identify sensors in the genes that recognize malaria DNA and RNA and activate interferon type I signaling following malaria infection. The increased production of interferon type I proteins within 24 hours of infection were essential for initial and long-term malaria immunity.
Current antimalarial drugs vary by country and are not 100 percent protective, according to the World Health Organization (WHO). The Centers for Disease Control reports that the malaria causing parasite, Plasmodium falciparum, has developed resistance to nearly all of the available antimalarial drugs, including chloroquine.
Wang hopes that his team's findings will help researchers understand how lethal malaria blocks type I interferon signaling and how regulating such signaling will aid in the development of effective anti-malaria vaccines for long-lasting malaria protection.
The research was supported in part by the National Cancer Institute (R01CA101795), National Institute on Drug Abuse (DA030338), the National Institutes of Health and by the Division of Intramural Research at the National Institute of Allergy and Infectious Disease (NIAID).
Source: Houston Methodist
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.