As public health officials around the world keep a nervous eye on the spread of avian influenza, the University of Saskatchewan's Vaccine and Infectious Disease Organization (VIDO) has uncovered a key step in how the influenza virus causes infection.
Yan Zhou and her team have discovered how a crucial pathway that supports the influenza A virus's ability to reproduce itself is activated, a finding that could pave the way for new drugs and vaccines.
The paper will appear in the January 2007 issue of the Journal of General Virology and recently has been given advance online publication.
"The work we are doing will be applicable to all influenza viruses, including influenza A virus subtype H5N1," said VIDO director Lorne Babiuk.
Zhou says that although years of research remain to be done, this work provides novel insights for developing live vaccines and antiviral drugs for influenza epidemics and pandemics. A provisional patent has been filed on the findings.
"Given the health, economic and social consequences of influenza epidemics, the work of Dr. Zhou and her team demonstrates the importance of building influenza research capacity in Canada," said Dr. Bhagirath Singh, scientific director of the CIHR Institute of Infection and Immunity.
"Their research findings may help to develop new influenza treatments and prevent the disease, as well as add to global pandemic preparedness research.
To survive, the influenza virus hijacks the host animal or human's cellular machinery and forces it to make more copies of the virus. The researchers believe that the cellular events involved in this process are an excellent target for interventions against influenza.
The study revealed novel characteristics of a protein, called NS1, that activates a key pathway in the virus's reproduction. This information will help the researchers learn how to create harmless influenza viruses that can be used as live vaccines.
The pathway can be thought of as an assembly line with a switch to turn it on, says Zhou. If the switch is turned on, the pathway enables efficient production of more viruses. But only the NS1 protein can turn on the switch."
The researchers are investigating genes and proteins of the influenza viruses of swine, horses and birds to see how they activate downstream cellular signaling pathways. To do this, they are using reverse genetics technology, where researchers begin with a gene and figure out its function.
These studies will allow the team to identify the genes that enable the virus to cause disease, laying the groundwork for antiviral drug development.
"Increasingly, new diseases involve both humans and animals, said Andrew Potter,VIDOs associate director of research. VIDO's background in veterinary research means that when diseases like avian influenza develop, we have the resources to begin studying the disease fairly quickly."
Support for Zhou and program members Yeun-Kyung Shin, Babiuk, Aleksandar Masic and Yang Li is provided by the Canadian Institutes of Health Research (CIHR) through a recently announced Pilot Project Grant for New Investigators in Infection and Immunity. The Saskatchewan Chicken Industry Development Fund and the Government of Saskatchewan are additional supporters. Shin is funded by the Veterinary Research and Quarantine Service of South Korea.
Source: VIDO
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.