Biofilms are associated with persistent infection. Reports characterizing clinical infectious outcomes and patient risk factors for colonization or infection with biofilm forming isolates are scarce. Barsoumian et al. (2015) report that their institution recently published a study examining the biofilm forming ability of 205 randomly selected clinical isolates. Their present study aims to identify potential risk factors associated with these isolates and assess clinical infectious outcomes.
Two hundred twenty-one clinical isolates collected from 2005 to 2012 and previously characterized for biofilm formation were studied. Clinical information from the associated patients, including demographics, comorbidities, antibiotic usage, laboratory values, and clinical infectious outcomes, was determined retrospectively through chart review. Duplicate isolates and non-clinical isolates were excluded from analysis. Associations with biofilm forming isolates were determined by univariate analysis and multivariate analysis.
The researchers report that 187 isolates in 144 patients were identified for analysis; 113 were biofilm producers and 74 were not biofilm producers. Patients were primarily male (78 %) military members (61 %) with combat trauma (52 %). On multivariate analysis, the presence of methicillin-resistant Staphylococcus aureus (p < 0.01, OR 5.09, 95 % CI 1.12, 23.1) and Pseudomonas aeruginosa (p = 0.02, OR 3.73, 95 % CI 1.46, 9.53) were the only characteristics more likely to be present in the biofilm producing isolate group. Infectious outcomes of patients with non-biofilm forming isolates, including cure, relapse/reinfection, and chronic infection, were similar to infectious outcomes of patients with biofilm-forming isolates. Mortality with initial infection was higher in the biofilm producing isolate group (16 % vs 5 %, p = 0.01) but attributable mortality was low (1 of 14). No characteristics examined in this study were found to be associated with relapse/reinfection or chronic infection on multivariate analysis.
The researchers conclude that bacteria species, but not clinical characteristics, were associated with biofilm formation on multivariate analysis. Biofilm forming isolates and non-biofilm forming isolates had similar infectious outcomes in this study. Their research was published in BMC Infectious Diseases.
Reference: Barsoumian AE, Mende K, Sanchez CJ, Beckius ML, Wenke JC, Murray CK and Akers KS. Clinical infectious outcomes associated with biofilm-related bacterial infections: a retrospective chart review. BMC Infectious Diseases 2015, 15:223 doi:10.1186/s12879-015-0972-2
New UV-C Disinfection Technology for Ultrasound Probes Earns FDA Clearance
September 4th 2024Chronos, a chemical-free UV-C disinfection device for ultrasound probes, received FDA clearance. It offers health care professionals a fast, automated solution to reduce cross-contamination and improve infection prevention.
Addressing Sterile Processing Instrument Errors With Advanced Technology and Data Insights
September 3rd 2024Surgical instrument errors, often linked to visualization failures during sterile processing, pose significant risks to patient safety and OR efficiency. Advanced technologies, including AI, are essential for reducing these errors and improving overall outcomes in sterile processing departments.
Implementing FDA 21 CFR Part 820 & ISO 13485 on Quality System Regulation
August 30th 2024The FDA's 21 CFR Part 820 and ISO 13485 are crucial in regulating medical device quality systems. Harmonizing these standards by 2026 will streamline compliance, improve patient access to devices, and align US regulations with global practices.
New UV-C Disinfection Technology for Ultrasound Probes Earns FDA Clearance
September 4th 2024Chronos, a chemical-free UV-C disinfection device for ultrasound probes, received FDA clearance. It offers health care professionals a fast, automated solution to reduce cross-contamination and improve infection prevention.
Addressing Sterile Processing Instrument Errors With Advanced Technology and Data Insights
September 3rd 2024Surgical instrument errors, often linked to visualization failures during sterile processing, pose significant risks to patient safety and OR efficiency. Advanced technologies, including AI, are essential for reducing these errors and improving overall outcomes in sterile processing departments.
Implementing FDA 21 CFR Part 820 & ISO 13485 on Quality System Regulation
August 30th 2024The FDA's 21 CFR Part 820 and ISO 13485 are crucial in regulating medical device quality systems. Harmonizing these standards by 2026 will streamline compliance, improve patient access to devices, and align US regulations with global practices.
2 Commerce Drive
Cranbury, NJ 08512