Rhode Island Biotechnology Company Wins NIH BioDefense Award to Develop Tularemia Vaccine

Article

PROVIDENCE, R.I. -- EpiVax, Inc, a leading provider of protein and genome analysis services, vaccine components, and vaccine candidates, has been awarded a BioDefense Phase I Small Business Innovation Research (SBIR) grant by the National Institute of Allergy and Infectious Diseases (NIAID), a division of the National Institutes of Health (NIH), for developing a genome-derived, epitope-driven tularemia (Francisella tularensis) vaccine.

 

The NIAID/NIH grant award for $859,773 will be used to develop a genome-derived, eptitope-driven tularemia vaccine. In this Phase I project, EpiVax will involve screening animal and human subjects for responses to tularemia epitopes. A novel tularemia vaccine candidate will be developed using molecular biology techniques.

 

"Our unique ability to develop epitope-driven vaccines by screening whole genomes for candidate vaccine component is at the core of this research effort," said Anne De Groot, MD, president and CEO of EpiVax. "This is a significant initial validation of our approach to create new and innovative vaccines to address such diseases as HIV, Tuberculosis, West Nile Virus, as well as biodefense threats, such as tularemia." Epitopes are part of a foreign organism (or its proteins) that is recognized by the immune system and targeted by antibodies and/or T cells.

 

EpiVax will collaborate with TB/HIV Research Lab at Brown University Rhode Island Hospital, and the Martha's Vineyard Hospital on this Phase I project. Brown University's new transgenic mouse facility will be a significant component of this project. An initial seed-funding grant of $70,000 from Brown University used for developing new strains of "mice with human immune systems" was a critical factor in the development of this research program.

 

Tularemia, in aerosol form, is considered a possible bioterrorist agent. Persons who inhale an infectious aerosol would likely experience severe respiratory illness, including life-threatening pneumonia and systemic infection, if they are not treated.

 

According to the Centers for Disease Control and Prevention (CDC), about 200 cases of tularemia in humans are reported each year in the United States. Tularemia is a disease caused by the bacterium Francisella tularensis. Tularemia is typically found in animals, especially rodents, rabbits, and hares. Francisella tularensis is highly infectious. A small number of bacteria (10-50 organisms) can cause the disease. If Francisella tularensis were used as a bioweapon, the bacteria would likely be made airborne. People who inhale the bacteria can experience severe respiratory illness. A "live-attenuated" vaccine for tularemia was used in the past to protect laboratory workers, but this vaccine is not currently available.

 

 Source: EpiVax, Inc

  

 

Related Videos
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Vaccine conspiracy theory vector illustration word cloud  (Adobe Stock 460719898 by Colored Lights)
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Infection Control Today Topic of the Month: Mental Health
Infection Control Today's topic of the month: Mental Health
Related Content