PROVIDENCE, R.I. -- EpiVax, Inc, a leading provider of protein and genome analysis services, vaccine components, and vaccine candidates, has been awarded a BioDefense Phase I Small Business Innovation Research (SBIR) grant by the National Institute of Allergy and Infectious Diseases (NIAID), a division of the National Institutes of Health (NIH), for developing a genome-derived, epitope-driven tularemia (Francisella tularensis) vaccine.
The NIAID/NIH grant award for $859,773 will be used to develop a genome-derived, eptitope-driven tularemia vaccine. In this Phase I project, EpiVax will involve screening animal and human subjects for responses to tularemia epitopes. A novel tularemia vaccine candidate will be developed using molecular biology techniques.
"Our unique ability to develop epitope-driven vaccines by screening whole genomes for candidate vaccine component is at the core of this research effort," said Anne De Groot, MD, president and CEO of EpiVax. "This is a significant initial validation of our approach to create new and innovative vaccines to address such diseases as HIV, Tuberculosis, West Nile Virus, as well as biodefense threats, such as tularemia." Epitopes are part of a foreign organism (or its proteins) that is recognized by the immune system and targeted by antibodies and/or T cells.
EpiVax will collaborate with TB/HIV Research Lab at Brown University Rhode Island Hospital, and the Martha's Vineyard Hospital on this Phase I project. Brown University's new transgenic mouse facility will be a significant component of this project. An initial seed-funding grant of $70,000 from Brown University used for developing new strains of "mice with human immune systems" was a critical factor in the development of this research program.
Tularemia, in aerosol form, is considered a possible bioterrorist agent. Persons who inhale an infectious aerosol would likely experience severe respiratory illness, including life-threatening pneumonia and systemic infection, if they are not treated.
According to the Centers for Disease Control and Prevention (CDC), about 200 cases of tularemia in humans are reported each year in the United States. Tularemia is a disease caused by the bacterium Francisella tularensis. Tularemia is typically found in animals, especially rodents, rabbits, and hares. Francisella tularensis is highly infectious. A small number of bacteria (10-50 organisms) can cause the disease. If Francisella tularensis were used as a bioweapon, the bacteria would likely be made airborne. People who inhale the bacteria can experience severe respiratory illness. A "live-attenuated" vaccine for tularemia was used in the past to protect laboratory workers, but this vaccine is not currently available.
Source: EpiVax, Inc
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.